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3.1. Introduction
This chapter focuses on the environmental fate of mercury (Hg), 
that is, the movements, transformations and bioaccumulation 
of Hg following its entry into the Arctic surface environment 
via the oceanic, atmospheric and terrestrial pathways described 
in Chapter 2. The chapter emphasizes those processes that are 
most relevant to biological Hg uptake and the consequent 
development of risk from Hg exposure in wildlife and human 
health, which will be explored in Chapters 5, 6, and 8.
 The chapter begins with a discussion of the chemical 
transformations of net deposited atmospheric Hg in aquatic 
and terrestrial environments and their associated snow and ice 
(Section 3.2). This is followed by a discussion of the movement 
of Hg from the abiotic environment into food webs (Section 
3.3). Methylation, a key process controlling the fate of Hg in 
most ecosystems, is the focus of Section 3.4 while Section 
3.5 addresses how trophic processes control Hg in higher 
order animals. Case studies on Eastern Beaufort Sea beluga 
(Delphinapterus leucas) and landlocked Arctic char (Salvelinus 
alpinus) provide salient examples of the relationship between 
ecosystem trophic processes and biological Hg levels. Section 
3.6 explores whether atmospheric mercury depletion events 
(AMDEs) contribute to increased Hg levels in Arctic biota. 
The effects of organic carbon on Hg speciation, dynamics, and 
bioavailability are explored in Section 3.7. Finally, Section 3.8 
focuses on long-term sequestration of Hg into non-biological 
archives.
 Mercury and its various chemical forms are discussed by 
reference either to chemically-defined species (e.g., gaseous 
elemental Hg, and monomethyl Hg) or to operationally-
defined species based on laboratory analytical schemes (e.g., 
total Hg, reactive Hg; Mason et al., 1998; Fitzgerald et al., 2007; 
Strode et al., 2007). Following these conventions, the following 
terminology and symbols are used: Hg(0) – elemental Hg either 
dissolved in water (DGM) or as a gas-phase vapor in air or 
snowpack interstitial air (GEM); Hg(II) – inorganic divalent 
Hg; MeHg – monomethyl Hg (CH3Hg+); DMHg – dimethyl 
Hg ((CH3)2Hg); HgC – colloidal Hg; THg – total Hg; and HgR – 
reactive Hg (about equivalent to the THg(II) pool including 
colloids and ligands).

3.1.1. The Arctic as a unique location

The terrestrial Arctic surrounds the Arctic Ocean, and many 
of the unique aspects of this region as a whole are the result 
of the interplay of physical, chemical, and biological processes 
between the land and the sea. With respect to the inputs and 
cycling of Hg, the Arctic, and particularly the Arctic Ocean, has 

a number of features that set it apart from all other regions. As 
a consequence, while many Hg processes (e.g., photochemical 
reactions, methylation) can be inferred from studies in 
temperate locations, the Hg cycle within the Arctic cannot 
due to its unique aspects. It has been argued that these features 
confer to Arctic Ocean ecosystems a particular sensitivity to the 
global Hg cycle, brought about by an array of post-depositional 
processes promoting Hg methylation (Macdonald and Loseto, 
2010).
 First, the Arctic has an exceptional seasonality going from 24 
hours of darkness in winter to 24 hours of sunlight in summer. 
This seasonality is synchronous around the Arctic so that spring 
freshet, biological production and photo-active processes all 
have a parallel cadence that is unique to polar environments. 
On land there are extreme shifts from a snow-covered to a green 
(vegetated) landscape every spring and then back to snow in 
the autumn. The short growing season is utilized by aquatic 
and terrestrial vegetation that receives almost continuous 
sunlight. Given that Hg undergoes photolytic reactions and is 
also entrained into the Arctic carbon cycle, then the Hg cycle 
will also exhibit exceptional seasonality.
 Second, sea ice is a defining feature of the Arctic Ocean. Sea 
ice provides a semi-permeable, seasonally variable interface 
between air and water with consequences for exchange of 
contaminants (e.g., Hg), heat, and gases. Sea ice also provides 
a habitat for a food web that includes almost everything from 
viruses to polar bears. The formation of sea ice during winter 
contributes brine to the ocean, thereby fostering mixing 
(the winter polar mixed layer) and convection (the Arctic 
haloclines). Halogen aerosols emitted from sea ice, together 
with the seasonality of sunlight, are key factors underpinning 
AMDEs which are unique to polar regions. At present one 
of the most visible changes in the Arctic Ocean is the loss of 
multi-year sea ice and its replacement by seasonal sea ice. This 
transition toward younger, more saline ice will have wide-
ranging but poorly understood, effects on Hg biogeochemical 
cycling.
 Third, the Arctic Ocean is a semi-enclosed sea, which 
restricts seawater exchange with the Pacific and Atlantic 
Oceans and thereby controls the residence time and sources 
of seawater within the ocean. The semi-enclosed setting of the 
Arctic Ocean also presents unique opportunities to construct 
material budgets. In terms of atmospheric connections, the 
Arctic receives and mixes air masses and their associated 
contaminants from all the major northern hemisphere 
continents (Europe, Asia, North America), and redistributes 
that air back to temperate latitudes.
 Fourth, the Arctic Ocean receives an exceptional input 
of freshwater runoff, thereby physically linking the land and 
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sea. Comprising about 3% of the world’s oceans by area, the 
Arctic receives 11% of global runoff. Much of this runoff is 
from locations underlain by permafrost that is degrading in 
response to climate warming. The consequence of all this runoff 
is that the upper Arctic Ocean is strongly stratified, which 
limits immediate exchange with the atmosphere to the top 
50 m of the water column in most places. Stratification by 
runoff is augmented in summer by widespread sea-ice melt, 
again restricting the depth (volume) of water that can exchange 
heat, moisture and chemical constituents with the atmosphere. 
Stratification together with sea-ice formation over the shelves 
leads to the production of haloclines in the Arctic Ocean. These 
underlie the polar mixed layer and separate this from the deeper 
water in the basins which has arrived from the Atlantic Ocean 
via Fram Strait. The haloclines tend to contain nutrient maxima, 
which indicate biological regeneration of organic matter. This 
regeneration may occur partly by vertical flux of labile carbon 
(plankton, fecal pellets, aggregates) within the Arctic Ocean 
and partly by imported regenerated products, especially those 
contained within Pacific water entering through Bering Strait 
and passing over the Chukchi Shelf.
 Fifth, the Arctic generally has a low sloping topography. 
Much of the land area consists of broad, low lying plains, 
while the Arctic Ocean contains the largest proportion of 
continental shelves (fully 50% of the ocean area) of all oceans. 
The shelves tend to be the location of active biogeochemical 
cycling because they have higher primary production and 
are the locations of recurrent flaw leads in winter. The leads 
provide important oases for the production of food, and are the 
immediate recipients of the enormous dissolved and particulate 
terrigenous inputs. The sediments accumulating on the shelves 
provide important locations where organic carbon metabolism 
can reduce or eliminate dissolved oxygen leading to a series 
of redox reactions, which affect the cycling of many elements 
including Hg. Particulate inputs to shelves include suspended 
sediments from rivers and even more sediment from coastal 
erosion, which is likely to be accelerating due to sea-level rise 
and permafrost thaw.
 Last, the interior area of the Arctic Ocean has an 
exceptionally low particulate export (‘biological pump’) because 
it is oligotrophic, which may mean that bio-active elements 
like Hg tend to recycle within the stratified polar mixed layer 
rather than transfer to deeper waters through particle flux. All 
of these processes are described in greater detail here and in 
Chapter 4.

3.2. What is the fate of net deposited 
atmospheric mercury in the various 
environmental media?
The net deposition of atmospheric Hg to the Arctic is the 
product of multiple processes: the total amount of Hg deposited 
onto snow and ice during springtime AMDEs, plus Hg added 
by other atmospheric deposition processes to the snow pack, 
land, or aquatic surfaces (i.e., wet or dry deposition outside 
the AMDE season), minus gaseous Hg(0) re-emitted from 
snow and ice surfaces due to microbial and photochemical 
reduction of Hg(II), minus the evasion of DGM (which includes 

all readily volatilized forms of Hg but dominated by Hg(0)) 
from freshwater or seawater.
 The bulk of the Hg remaining subsequent to these processes 
is mostly in the form of inorganic particulate Hg(II) species, 
dominated by uncharged or negatively charged complexes 
with OH-, Cl- and Br- (Poulain et al., 2007a). A small increase 
in MeHg concentration in the snowpack has been shown to 
occur just prior to snowmelt (Constant et al., 2007), but it is 
not known how much of this is produced in the snowpack 
compared to that falling in snow. The impact of this net 
deposited Hg on Hg concentrations in receiving waters (rivers, 
lakes, ocean) is the subject of ongoing research. Recent studies 
(St. Louis et al., 2005, 2007; Dommergue et al., 2010) which 
focused on the fate in marine systems of Hg from snowpacks 
during and following snowmelt determined that melt runoff 
was not a substantial contributor to the THg or MeHg budgets 
of Arctic seawater. In freshwaters, however, significant increases 
in THg flux to sediments during the 20th century indicate that 
deposited atmospheric Hg has had an impact on Hg levels in 
lake sediments and, by extension, on freshwater Hg budgets 
in the Arctic (Fitzgerald et al., 2005; Semkin et al., 2005; Muir 
et al., 2009).
 Deposited Hg either enters aquatic environments (marine 
systems, melt ponds, lakes, rivers) or remains in multi-year 
snow and ice. The fate of Hg deposited onto freshwater and 
marine environments is considered separately. After entering 
seawater, Hg(II) can be photo- or microbially-reduced and lost 
due to evasion of DGM. This has been inferred from elevated 
GEM concentrations in air above Arctic seawater (Sommar et 
al., 2004, 2010) and melt ponds on sea ice (Aspmo et al., 2006). 
Andersson et al. (2008) determined DGM concentrations along 
an extensive transect crossing the North American boundary 
of the Arctic Ocean and the interior ocean (Figure 3.1), and 
showed clearly that ice-covered regions tended to have high 
levels of DGM in the water beneath the ice. These data suggest 
that the reduction of Hg(II) to Hg(0) occurs widely in seawater, 
but that sea-ice cover prevents evasion of the Hg(0) back into 
the atmosphere. Mercury photo-reduction and evasion from 
aquatic systems also occurs at lower latitudes, and the air-sea 
exchange of Hg in aquatic systems has been explored in detail 
by Strode et al. (2007) and Whalin et al. (2007), among others. 
The production of DGM in Arctic coastal streams and ponds, 
estuaries, and in marine waters is strongly affected by chloride, 
with lower DGM formation observed at higher salinities 
(Poulain et al., 2007b). Halogens in general, and chloride 
ions in particular, have been shown to enhance Hg(0) photo-
oxidation to Hg(II) and hence hamper evasion (Lalonde et al., 
2001; Whalin et al., 2007). On the other hand, rivers provide a 
significant source of THg, including dissolved and particulate 
forms, to Arctic coasts (Coquery et al., 1995; Leitch et al., 2007; 
Outridge et al., 2008). In the case of the Mackenzie River, as it 
enters the coast during ice-free conditions (late July), processes 
leading to high levels of DGM in the water appear to prevail as 
there is a strong increase in DGM associated with plume water 
(Figure 3.2; Andersson et al., 2008). Andersson et al. (2008) 
proposed that the high levels of DGM might either be supplied 
directly by the Mackenzie River or be a sign of enhanced DGM 
production facilitated by riverine dissolved organic carbon 
(DOC). Clearly, more seasonal measurements are required 
to determine the annual balance between supply of Hg to 
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coastal regions, loss of Hg through evasion, burial or advection, 
and entry of Hg into shelf food webs. The suppression of Hg 
reduction due to chloride is also partly counterbalanced by the 
presence of particles (possibly particulate iron oxides), which 
favor the conversion of oxidized Hg to its elemental form, 
although the exact mechanisms have not been elucidated.
 There are three other important mechanisms by which the 
net deposited Hg may be lost to the surface Arctic Ocean: 
export of ice and snow to the Atlantic Ocean; outflow of water 
to the Atlantic Ocean; and vertical particle flux into the deep 
ocean. Net deposited Hg contained in the ocean or sea ice is 
actively removed from the Arctic Ocean on time scales set by 
the export rates of ice, particles and water. Sea ice is exported 
at a rate of about 2500 km3/y which, if a 3 m layer of sea ice 
is assumed, implies the export of about 0.8 × 106 km2/y of 
snow/ice and its burden of deposited Hg. The time required 
for sea ice to leave the Arctic Ocean varies from one to six 
years depending on where it has been produced (Macdonald 
et al., 2005). This sets an upper limit of six years for net Hg 
deposition to be held on or within sea ice and associated snow. 
Seasonal ice formation and melting almost certainly reduce this 
ice residence time. Mass balance calculations indicate that sea-
ice export was a minor loss process, amounting to only about 
7 t/y, because of very low ice Hg concentrations (Outridge et 
al., 2008). Seawater in the upper Arctic Ocean has residence 

times varying from one to three years on the shelves, about ten 
years in the polar mixed layer and roughly 30 years in halocline 
waters beneath the mixed layer (Macdonald and Bewers, 1996; 
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Figure 3.1. Dissolved gaseous mercury (DGM) in surface water along the Beringia 2005 cruise track showing predominant supersaturation in the water, 
with generally higher DGM concentrations found under locations covered with sea ice. Modified from Andersson et al. (2008).
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Figure 3.2. Dissolved gaseous mercury (DGM) in surface water along the 
Beringia 2005 cruise track as it crossed the Mackenzie River plume. The 
high DGM concentrations in plume waters may indicate direct supply from 
the river, or enhanced production of DGM facilitated by riverine dissolved 
organic carbon. Modified from Andersson et al. (2008).
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Macdonald et al., 2005). Deeper in the ocean, the residence 
times are up to several centuries based on 14C and other tracers 
(e.g., Macdonald et al., 1993; Schlosser et al., 1994). Again, this 
sets the time scale over which deposited Hg can be held in 
this reservoir. Seawater export accounted for 68 t/y (range of 
estimates 22 to 113 t/y) total Hg from the Arctic Ocean, or about 
a third of total losses of Hg annually (Outridge et al., 2008). 
Finally, Hg may be scavenged by algae- and microbe-derived 
particulate organic matter (POM) and exported to the deep 
ocean (Mason and Fitzgerald, 1993; Sunderland et al., 2009). 
How important this process is in the Arctic is not known with 
precision, but globally, it appears to account for almost half of 
the contaminant Hg deposited into the ocean (Sunderland and 
Mason, 2007). First-order estimates currently suggest that over 
half (108 t/y, range 13 to 200 t/y) of the total Hg losses from 
the Arctic Ocean occur via this route (Outridge et al., 2008). 
The effect of particle flux will be to reduce the residence time 
of deposited Hg in surface water to a period shorter than the 
residence time of the water.
 Freshwater systems (lakes and rivers) provide another 
ecosystem receptor for Hg deposition to the Arctic. Watershed 
transport of deposited inorganic Hg to lakes appears to vary 
among different Arctic regions with differences largely driven 
by physiographic conditions. In Amituk Lake in the Canadian 
High Arctic, snowmelt delivered the most THg during spring 
in June and early July (Loseto et al., 2004a; Semkin et al., 
2005). The spring freshet is the critical period of discharge 
from High Arctic watersheds because up to 80% of the total 
annual precipitation is deposited as snow during the long polar 
winter (Woo, 1983). The snow-associated Hg, which is largely 
of atmospheric origin, flows in meltwater over soils early in 
the season when they are largely still frozen, and is eventually 
transported to lakes (Semkin et al., 2005). Thus the integration 
of this atmospheric Hg into ecosystem soils and vegetation may 
be limited. Erosion of thawed soils during summer provides an 
important source of inorganic Hg to lakes in Alaska (Fitzgerald 
et al., 2005) and possibly elsewhere in the Arctic. Soil loadings 
of Hg to Alaskan lakes were associated primarily with silt 
(Fitzgerald et al., 2005) and were greater in lakes with higher 
watershed/lake area ratios (Hammerschmidt et al., 2006).
 Mercury reaching Arctic lakes from snowmelt runoff and 
throughout the remainder of the open water season can be 
recycled back to the atmosphere before entering food webs, 
through sunlight- or microbially-mediated reduction of Hg(II) 
(Costa and Liss, 1999; O’Driscoll et al., 2006), as it can in Arctic 
seawater. Arctic lakes generally contain supersaturated surface 
water concentrations of DGM (Amyot et al., 1997; Tseng et al., 
2004). The latter studies reported average DGM concentrations 
of the order of 200 fM (40 pg/L), representing about 3% of 
the total dissolved Hg in lake waters. In Arctic Alaskan lakes, 
the DGM evasion flux was similar to the atmospheric input 
of Hg in summer precipitation (Tseng et al., 2004). DGM 
concentrations in lakes typically vary both daily and seasonally 
and its formation in surface waters is believed to be dominated 
by photochemical processes. At depth, other processes likely 
to be associated with microbial activity dominate (Vandal et 
al., 1991; Mason et al., 1995; Poulain et al., 2004). The relative 
importance of photochemical vs biological processes in 
controlling the reduction rate of Hg(II) in Arctic freshwaters 
remains to be elucidated. According to Amyot et al. (1997), 

the rate is controlled by: the intensity of solar radiation, 
particularly UV-B (280-320 nm) and UV-A (320-400 nm) 
wavebands; and the concentration of available photo-reducible 
Hg(II) complexes. DOC is also important as it controls the 
penetration of ultraviolet (UV) radiation into water.
 Aquatic productivity can strongly mediate the retention of 
Hg in Arctic lakes, particularly in high latitude polar desert 
regions, by increasing the rate of scavenging of Hg from the 
water column and its accumulation in lake sediments (Outridge 
et al., 2005b, 2007). These High Arctic lakes have extremely low 
biological production (Welch and Kalff, 1974; Markager et al., 
1999), resulting in a low capacity to retain aqueous Hg through 
scavenging by algae and suspended detrital organic matter. 
In studies of four lakes in the Canadian Arctic Archipelago 
and the Yukon, sediment fluxes of THg increased during the 
20th century and were correlated with an increase in aquatic 
productivity inferred by diatom abundances and chemical 
characterization of the sedimented organic matter (Outridge 
et al., 2007; Stern et al., 2009; Carrie et al., 2010). Similarly, the 
amount of organic matter is an important factor explaining the 
spatial distribution of Hg in sediments within and among Arctic 
lakes. Organic matter, which strongly binds Hg (Fitzgerald and 
Lamborg, 2004), occurs at low concentrations in nearshore 
and deep-water sediments of High Arctic lakes (typically less 
than 10% dry weight, total organic carbon; Outridge et al., 
2007; Chételat et al., 2008; Muir et al., 2009). Spatial variations 
in sediment concentrations of THg and MeHg are in general 
strongly correlated with organic carbon content (Morel et al., 
1998; Outridge et al., 2007; Chételat et al., 2008). In Alaskan 
lakes, sediment MeHg concentrations were found to be strongly 
correlated with organic carbon content whereas inorganic Hg 
concentrations were related primarily to the focusing of fine-
grained inorganic soil particles (Hammerschmidt et al., 2006).

3.2.1. Spring snowmelt as a major seasonal 
transition in the Arctic mercury cycle

Roughly half to three-quarters of the annual surface water 
runoff in polar regions is from spring snowmelt (McNamara 
et al., 1998). As a consequence, the spring melt runoff event is 
the most important time for Hg that accumulated in snowpacks 
over winter to be transferred into aquatic and terrestrial 
ecosystems. The spring melt comprises the net Hg contribution 
from snowpacks after re-emission has had its effect (see Section 
2.6). It is well known from work in temperate latitudes that the 
early pulse of water from initial snow melt typically includes an 
‘ionic’ pulse of major elements (Tranter et al., 1986; Bales et al., 
1989; Williams and Melack, 1991; Harrington and Bales, 1998), 
and which includes dissolved and particulate Hg (Schuster et 
al., 2008).
 In Arctic regions, both MeHg and THg in melt water occur 
at concentrations elevated above full-column snowpack values 
at the onset of snow melt in many locations (Berg et al., 2003; 
Dommergue et al., 2003b, 2010; Loseto et al., 2004a), but not 
in all (Aspmo et al., 2006). A summary of meltwater THg 
concentrations reported by six studies at nine sites across the 
Canadian and Greenland Arctic revealed a range from 0.3 to 
10 ng/L with an average of about 3 ng/L (Outridge et al., 2008). 
In a recent study at Ny-Ålesund, Svalbard, most of the Hg(II) 
remaining in the snowpack prior to melt was rapidly expelled 
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from snow matrices, leading to a brief pulse of THg-enriched 
melt water (Diommergue et al., 2010). Streams receiving 
snowpack melt runoff (averaging 3.5 ± 1.9 ng Hg/L; n=13), 
and runoff waters originating from the Austre Lovénbreen 
glacier (2.2 ± 1.1 ng Hg/L; n=7), contributed 1.5 to 3.6 kg/y of 
THg to the fjord at Ny-Ålesund (i.e., 8% to 21% of the fjord’s 
THg content). In another study at Ny-Ålesund, snow samples 
showed increased THg concentrations during the season’s first 
AMDEs, but subsequent concentrations during the melt period 
were at pre-AMDE levels (Steen et al., 2009). At Kuujjuarapik, 
on Hudson Bay, a Hg(0) pulse in snowpack interstitial air was 
found to coincide with the initiation of snowmelt (Dommergue 
et al., 2003a). However, gas phase exchange did not remove Hg 
from the snowpack, and more than 90% of the Hg present in the 
surface snow was believed to have been released with meltwater. 
On sea ice off northern Greenland, snow and meltwater pond 
samples contained between 1.3 and 8.1 ng/L of THg in snow, 
and from below detection to 5.1 ng/L in meltwater, and were 
comparable with surface snow measurements at other remote 
Arctic locations prior to polar spring (Aspmo et al., 2006). 
As a result, the authors concluded that there was no long-
term accumulation of Hg in these compartments following the 
springtime AMDE season, suggesting that the net deposited 
Hg was released each year in meltwater.

3.2.2. Microbial carbon processing and 
mercury in the Arctic

The fate of Hg deposited onto Arctic ecosystems depends 
not only on snow photochemistry (Dommergue et al., 2003a; 
Steffen et al., 2008b) and ocean water physical and chemical 
characteristics, but probably also on microbial processes 
(Poulain et al., 2007c). There is good evidence that microbes 
actively metabolize at subzero temperatures in snow (Amato et 
al., 2007) and sea ice (Junge et al., 2006). This raises the question 
of whether deposited Hg(II) can be actively transformed into 
other species (GEM or MeHg) by microbes in the Arctic 
cryosphere (snow, sea ice, freshwater ice). The involvement 
of bacteria in the Hg cycle in the Arctic, however, has been 
almost completely overlooked. In temperate environments 
it is known that some bacteria carry genes that make them 
resistant to Hg(II) and MeHg because they convert these Hg 
compounds into the volatile and less toxic Hg(0) (Barkay et al., 
2003). Sulfate-reducing bacteria are able to methylate Hg(II) 
species under anaerobic conditions in Arctic sediments and 
wetlands (Loseto et al., 2004a,b). Therefore, bacteria in Arctic 
ice/snow and in the aquatic environment may well play a critical 
role in the conversion of deposited Hg to MeHg and/or Hg(0) 
depending on a number of environmental factors including 
the level of oxygen present.
 Microbes can also influence Hg speciation and fate in other 
ways through processes involving the carbon cycle. The presence 
of carbon, which in the treeless Arctic mostly originates from 
autochthonous production (as bacterial and algal particulate 
detritus, exudates or DOC) helps to regulate the fate of Hg in 
Arctic aquatic systems, as it does at temperate latitudes; one of 
the mechanisms by which it does this is absorption of light in 
the water column (Lalonde et al., 2002, 2003; Fitzgerald and 
Lamborg, 2004; Poulain et al., 2007c). C-DOM (colored dissolved 
organic matter), a powerful absorber of UV radiation, provides 

a particularly important control on photo-demethylation and 
photo-reduction rates. As a consequence, an inverse relationship 
has been observed between DOC levels and DGM formation 
in Arctic lakes (Tseng et al., 2004). In saline waters, organic 
compounds produced by algae are able to promote oxidation 
of Hg(0) even under dark conditions (Poulain et al., 2007c). 
Coastal environments are colonized by Hg-resistant bacteria 
potentially able to reduce Hg. Simple box modeling suggests 
that this bacterial reduction could be significant in ocean 
waters, although bacterial Hg reduction rates need to be directly 
quantified (Poulain et al., 2007c).
 In other oceans, it has recently been demonstrated that 
MeHg can be produced during the remineralization of algal 
detritus in the water column (Sunderland et al., 2009; Cossa et 
al., 2009). Cossa et al. (2009) showed that the vertical transport 
of MeHg associated with particulate flux from surface waters 
was relatively unimportant compared to the in situ production 
of MeHg which occurred in association with nutrient maxima 
at subsurface water depths. Little is known about this process 
in the Arctic; however, the Arctic Ocean does possess pervasive 
strong nutrient maxima below the polar mixed layer (Wang et 
al., 2006). Kirk et al. (2008) reported that MeHg, both in terms 
of concentration and as a percentage of THg, was highest in 
the middle and bottom depths of Hudson Bay and waters of 
the Canadian Arctic Archipelago, suggesting that the in situ 
production of MeHg reported by Sunderland et al. (2009) and 
Cossa et al. (2009) may also occur in subsurface Arctic seawaters.

3.2.3. The fate of mercury in the Arctic Ocean

Most of the human exposure to Hg in the Arctic is attributable 
to the consumption of traditional marine foods (AMAP, 2009b). 
However, even in the global environment, understanding of 
marine Hg biogeochemistry is limited by under-sampling and 
under-study (Fitzgerald et al., 2007). Nevertheless, it may be 
assumed that the basic components of the marine Hg cycle as 
understood from temperate ocean studies (e.g., Morel et al., 
1998; Lamborg et al., 2002a; Fitzgerald et al., 2007; Strode et al., 
2007; Sunderland and Mason, 2007) can be applied to the Arctic 
Ocean, with the caveat that the rates and relative importance 
of many processes will differ. Indeed, Hg biogeochemistry 
appears to exhibit significant differences even between 
temperate ocean basins (c.f., Laurier et al., 2004; Fitzgerald et 
al., 2007; Sunderland and Mason, 2007). Therefore, it is likely 
that features characteristic of the Arctic Ocean such as seasonal 
ice cover, strong seasonality in light and primary production, 
AMDEs, large river inputs and exceptionally large shelves will 
all contribute to a distinctly different Hg cycle in Arctic seas 
(e.g., see Andersson et al., 2008; Sommar et al., 2010).
 The ability of Hg to transfer between environmental media 
and transform from one chemical species to another (Figure 
3.3) makes the environmental chemistry of this element a 
challenging subject. In the global ocean, THg is usually found 
in the range 0.02 to 0.5 ng/L (Mason et al., 1998; Laurier et al., 
2004; Strode et al., 2007; Sunderland et al., 2009) with Arctic 
seas or outflowing water from the Arctic possibly at the low end 
of this range (Mason et al., 1998; St. Louis et al., 2007; Kirk et 
al., 2008). Outridge et al. (2008) estimated that the top 200 m 
of the Arctic Ocean had a THg inventory of 620 to 945 tonnes 
(best estimate 945 tonnes), which is far larger than estimated 
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annual fluxes into or out of the surface Arctic Ocean, implying 
Hg residence times of five to ten years. Of the large inventory 
of Hg held in the surface Arctic Ocean, Hg(II) plays a central 
role due to its reactivity. The two predominant Hg species in 
the upper ocean are Hg(II) and Hg(0), each of which may 
dominate under different circumstances or at different locations 
(e.g., Mason et al., 1998, 2001; Strode et al., 2007; Fitzgerald 
et al., 2007; Andersson et al., 2008). Divalent Hg is supplied 
to the Arctic Ocean through atmospheric deposition, coastal 
erosion, river input, and exchange of water from the Pacific and 
Atlantic Oceans (Strode et al., 2007; Outridge et al., 2008; see 
Section 2.4), and through processes that produce Hg(II) from 
Hg(0) and/or MeHg within the ocean. These processes are at 
least partly balanced by reduction to Hg(0), which then leads 
to super-saturation of DGM and net evasion of Hg(0) back to 
the atmosphere (Figures 3.1 and 3.3).
 This sequence of Hg(II) supply to the ocean, reduction to 
Hg(0), and evasion back to the atmosphere is common to all 
oceans, and is an important component of the global Hg budget 
(Mason et al., 1995; Strode et al., 2007). The reduction of Hg(II) 
can be mediated by photons or microbes (Fitzgerald and Lamborg 
2004). Partly because the Arctic Ocean’s photochemistry is 
inhibited by ice cover during winter and partly because snow, 

ice, C-DOM and suspended particulates limit light penetration 
at many locations during other times of the year (e.g., Granskog 
et al., 2007), the microbial reduction of Hg(II) to Hg(0) is 
likely to play a dominant role in the Arctic Ocean (Poulain et 
al., 2007b). Recent ocean transect data show very clearly that 
surface waters in the Arctic have enhanced concentrations of 
DGM possibly due to ice cover reducing the rate of gas evasion 
to the atmosphere (Andersson et al., 2008; Sommar et al., 2010). 
Andersson et al. (2008) reported a surface-water DGM range of 
0.002 to 0.14 ng/L and an average of about 0.044 ng/L, which is 
well above the value that would be in equilibrium with the Arctic’s 
atmosphere (~ 0.008 ng/L). The high average concentration 
implies an inventory of Hg(0) in the top 200 m of the Arctic 
Ocean of about 120 tonnes, which is a considerable fraction 
of the THg inventory (945 tonnes, Outridge et al., 2008). For 
the global ocean, the evasion of Hg(0), estimated at 2800 t/y 
(Strode et al., 2007), rivals global anthropogenic emissions and, 
therefore, this process is a major feature of the marine Hg cycle. 
If the global Hg(0) evasion is allocated on a pro rata basis to the 
Arctic Ocean based on surface area, then about 120 tonnes of 
Hg would be transferred from ocean to atmosphere annually. 
However, as previously mentioned, ice cover may reduce the 
capacity of the Arctic Ocean to evade its Hg(0) to perhaps less 
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than 10% in winter, and about 50% in summer, based on seasonal 
sea-ice extent. Thus, the rate of evasion currently may be as little 
as 3 to 12 t/y (Outridge et al., 2008). Offsetting the negative effect 
of ice cover, however, is the relatively high supersaturation of 
Hg(0), from which Andersson et al. (2008) estimated an average 
summertime Hg(0) evasion of 60 ng/m2/d (12 pmol/m2/h), with 
a hypothetical maximum as high as 2300 ng/m2/d, during their 
transect of the Canadian Arctic Archipelago and Arctic Ocean. 
These observations suggest that Hg(0) is a dynamic component 
of exchange between seawater and air in the Arctic, and one that 
is highly susceptible to the extent of sea-ice cover. Furthermore, 
AMDEs, while depositing Hg(II) onto the ice, could actually 
force greater net evasion of Hg(0) out of the ocean due to the 
consequent increased fugacity differential between air and water. 
The evasion of Hg(0) from seawater is likely to contribute to the 
observed positive excursions of atmospheric GEM concentrations 
that rise well above the Arctic background of about 1.6 ng/m3 
after the onset of AMDEs in spring and later during summer 
(Steffen et al., 2008b; Sommar et al., 2010). These estimates 
clearly underscore the potential for the Arctic Ocean to evade 
annually a substantial amount of Hg(0), possibly as much as 
any other ocean.
 A second important feature of marine Hg(II) geochemistry 
is that divalent Hg interacts with DOC and chloride ions to 
form complexes (Fitzgerald et al., 2007). Complexes are likely 
to provide the important reservoir of Hg(II) in the upper 
ocean, especially where DOC is in high concentration. A large 
component of Hg(II) can be held in the colloidal fraction alone 
(10% to 50%, Strode et al., 2007), but some of the reactive Hg 
enters the vertical particle flux to the deep ocean through 
packaging and flocculation, making POC (particulate organic 
carbon) also important to the Hg cycle. The vertical flux out 
of the polar mixed layer is likely to provide the other major 
process internal to the Arctic Ocean that helps to balance 
Hg(II) deposited at the surface, and this process also appears 
to be crucial to the storage of contaminant Hg globally in the 
deep ocean (Guentzel et al., 1996; Mason and Sullivan, 1999; 
Strode et al., 2007; Sunderland and Mason, 2007). In the coastal 
Arctic, where there is a plentiful supply of organic and inorganic 
particulates from rivers, coastal erosion and primary production 
(McGuire et al., 2009), the entrainment by particles and burial 
of Hg may be particularly important (Outridge et al., 2008), as 
also seems to be the case for temperate oceans (Sunderland and 
Mason, 2007). While all of these processes and reactions have 
the potential to play crucial roles in the aquatic biogeochemical 
cycle of Hg, little is known quantitatively about their relative 
importance in polar seas or what sort of balance between 
processes is achieved in coastal, shelf or interior ocean waters.
 Rivers supply Hg(0), Hg(II), MeHg and particulate Hg to 
Arctic coastal waters (Coquery et al., 1995; Leitch et al., 2007; 
Andersson et al., 2008; Graydon et al., 2009). Even though 
rivers collectively supply over 3500 km3/y of freshwater and 230 
million t/y of particulates to the Arctic Ocean (see Outridge et 
al., 2008), Hg fluxes are poorly characterized for most of the 
inflow and thus represent a major uncertainty in the budget 
for the Arctic Ocean. Concentrations have not been measured 
in many of the major rivers and studies lack the appropriate 
temporal resolution to capture some of the seasonality in 
discharge. Whether or not the riverine Hg load is an important 
source of MeHg to marine biota, either directly or indirectly, 

remains unclear. Not only do rivers supply Hg, but they also 
supply organic and inorganic components (DOC, POC) that 
can sequester and bury Hg, or incorporate Hg(II) as organic 
ligands (Fitzgerald et al., 2007), or simply produce a stratified 
surface layer effective at evading its Hg(0) (Andersson et al., 
2008). On the other hand, the organic carbon associated with 
rivers may support the production of MeHg in estuarine and 
coastal sediments, which is then available for uptake in food 
webs. There are no Arctic data presently available to indicate 
which processes are most important.
 Figure 3.3 strongly implicates solar radiation and the organic 
carbon cycle as key controlling variables in the Arctic Ocean’s 
Hg cycle. The Arctic has an annual light cycle that goes from 
24-hour darkness to 24-hour light, snow and ice cover that 
control the penetration of radiation into water, and riverine 
C-DOM which strongly absorbs UV radiation. Variation in 
these parameters can alter the balance between the loss of 
Hg by burial, or the reduction to Hg(0) and evasion, or the 
production of MeHg and its subsequent entry into food webs. 
The interior part of the Arctic Ocean is oligotrophic, supporting 
a low particle flux (O’Brien et al., 2006). Therefore, the rate 
of removal of particulate Hg from the surface, an apparently 
important component of the global ocean Hg cycle (Sunderland 
and Mason, 2007), may operate weakly in the central basin of 
the Arctic Ocean compared with other oceans. However, burial 
rates may be more important in Arctic continental shelf areas. 
Of the 108 t/y of the total Hg lost from the upper Arctic Ocean 
by sedimentation, 95 t/y was estimated to occur over shelves, 
a rate which approximates the net atmospheric input of Hg 
(Outridge et al., 2008).
 Finally, and perhaps most importantly, Hg(II) undergoes 
a complex set of reactions leading to DMHg and MeHg 
production. These processes (Figure 3.3) are poorly quantified 
in the Arctic, but recent work has shown them to be potentially 
important in polar surface waters (St. Louis et al., 2005, 2007; 
Kirk et al., 2008). Clearly, the processes controlling the 
production of MeHg and its entry into the bottom of the food 
web are fundamental to understanding Hg trends at all trophic 
levels of the marine food web. Like Hg(0), DMHg evades readily 
into the atmosphere where rapid photolytic decomposition to 
MeHg followed by deposition has been proposed as the source 
of MeHg in snow and meltwater ponds in coastal regions (St. 
Louis et al., 2005, 2007). By examining the predominant form 
of Hg as it enters the Arctic and then passes through aquatic 
systems to eventually accumulate at concentrations of concern 
in top predators, it is clear that two transformations play crucial 
roles. First, the relatively benign Hg(0) circulating globally in 
air or water must be oxidized to Hg(II) and second, Hg(II) must 
be methylated and accumulated in top predators (Figure 3.4).
 It has long been hypothesized that Hg can be methylated in 
oxic environments, but only recently has this been demonstrated 
in the water column of temperate oceans (Cossa et al., 2009; 
Sunderland et al., 2009). Methylation of Hg(II) occurs during 
detrital regeneration and leads to elevated MeHg associated 
with oceanic nutrient maxima. This MeHg, which is produced 
from the abiotic Hg(II) reservoir in the ocean rather than the 
particulate Hg carried by detritus (Cossa et al., 2009), could 
enter food webs either through upwelling (Conaway et al., 
2009) or through vertical migration of zooplankton (Stern and 
Macdonald, 2005). Anoxic environments favorable to sulfate 
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reduction also harbor microbes that can methylate Hg(II) 
(Fitzgerald and Lamborg, 2004; Fitzgerald et al., 2007). In 
particular, environments that favor sulfate reducers and have a 
gradient in redox conditions are more ideal for methylation than 
truly ‘anoxic’ environments. The clearest circumstances where 
anoxic methylation processes would be favored are generally 
restricted to sediments in the Arctic. Within the Arctic Ocean’s 
sediments there is a wide range in redox conditions, with shelf 
and estuarine sediments generally exhibiting sulfidic conditions 
near the sediment surface; basin sediments exhibiting oxic 
or suboxic conditions may be found from the surface down 
to tens of centimetres deep into the sediment (e.g., Gobeil et 
al., 1997, 2001b). Methylating processes are complicated by 
interactions between Hg and sulfide (Fitzgerald et al., 2007) 
such that sulfide sequestration of inorganic Hg(II) may compete 
with MeHg production if conditions lead to sufficiently high 
sulfide accumulation. Sediments, especially in estuaries, shelves 
and slopes, therefore provide another potential source of MeHg 
to shelf benthos and bottom waters (e.g., Fitzgerald et al., 2007).

3.3. How does mercury move from the 
abiotic environment into food webs, 
and what are the factors influencing 
this movement?
In the abiotic environment, Hg that is taken up by biological 
organisms is by definition in a chemical form and a physical 
location where it is available to biota. Thus, ‘bioavailability’ 
is a key issue. It is generally acknowledged that MeHg is 
significantly more bioavailable than the inorganic Hg(II) 
which is most abundant in the environment (Mason et al., 
1996; Fitzgerald et al., 2007). Although both inorganic and 
MeHg species may be assimilated by biota at the lowest levels 

of food chains (bacteria, archaea, phytoplankton and other 
algae), only MeHg is biomagnified within food chains and thus 
presents the key exposure risk to Arctic wildlife and humans. 
Therefore, a critical question with respect to the bio-uptake 
of Hg into Arctic food webs concerns the mechanisms and 
locations where inorganic Hg(II) in the abiotic environment 
is predominantly transformed into MeHg and then assimilated 
into the lower levels of Arctic food webs.

3.3.1. Bioavailability of mercury

The concept of ‘bioavailability’ of Hg includes the availability 
of inorganic Hg forms to microbial populations responsible 
for Hg methylation and the availability of MeHg in prey items 
to predators within food webs. This definition requires that 
after production at a certain location, MeHg is transported 
to and then bioaccumulated by the lowest trophic levels of 
terrestrial, freshwater and marine communities before being 
transferred via prey-predator interactions into higher trophic 
level organisms. Taken together, these processes lead to MeHg 
concentrations that span about ten orders of magnitude going 
from atmosphere to beluga, and a shift from MeHg as a minor 
component of THg in air, snow or water to the predominant 
form in aquatic species at trophic levels 2 and above (Figure 3.5).
 Bioavailability is likely to be controlled by many 
environmental and physiological factors that include: the 
chemical form and biochemical reactivity of environmental Hg; 
the activity of microbial communities; the nature and quantities 
of ligands, electron acceptors, and surfaces in the environment; 
and the balance between dissolved versus particulate forms 
of Hg. Around four times as much MeHg is assimilated by 
phytoplankton compared to inorganic Hg (Mason et al., 
1996). Microbes do not represent a single type of biochemical 
binding entity for Hg, but are in effect variable ligands both 
taxonomically and physiologically due to their differing 
metabolisms and physical structures. Microbes also constantly 
change in response to physical and chemical alterations in 
their environment, thereby potentially affecting inorganic Hg 
uptake and methylation rates. Whether in snow, water, ice, soil 
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or sediments, the metabolism of microbes will be influenced 
to some extent by the availability (or absence) of electron 
acceptors such as oxygen, nitrate, sulfate, or Fe(III), which 
are also likely to affect Hg methylation rates. Complexation 
with organic ligands can reduce or enhance microbial cell Hg 
accumulation (Lawson and Mason, 1998; Pickhardt and Fisher, 
2007; Gorski et al., 2008). Uptake of MeHg and inorganic Hg by 
diatoms is influenced by Hg speciation, especially complexation 
with DOC and Cl- (Zhong and Wang, 2009). Thus, the factors 
controlling MeHg bioavailability and uptake from water by 
algae or phytoplankton are critical, yet have been poorly 
investigated in Arctic aquatic systems.

3.3.2. Transfer pathways for mercury into 
Arctic food webs

In temperate environments, inorganic Hg is methylated 
predominantly by microbes. From a combination of laboratory 
and field studies, it is believed that there are two main inorganic 
Hg uptake pathways by microbes that lead to Hg methylation. 
One is passive diffusion of dissolved uncharged Hg species 
through the lipidic bilayer of microbial cell walls (e.g., Hg(II) 
associated with sulfide or polysulfides Hg(II)-S; Benoit et 
al., 1999). The other is active transport of Hg species (e.g., 
by the amino acid transport system; Golding et al., 2002). It 
was recently shown that the addition of low levels of cysteine 
significantly increased Hg(II) methylation by a known Hg 
methylator (Schaefer and Morel, 2009).
 Unicellular organisms (e.g., bacteria, microalgae, 
protozoans) are also thought to be the main entry point of 
MeHg into aquatic food webs. The MeHg bioaccumulation 
step from water to phytoplankton and other seston represents 
the largest single increase for MeHg concentrations in aquatic 
ecosystems, and can be 104 or greater (Watras and Bloom, 
1992; Baeyens et al., 2003). MeHg may initially enter food webs 
either through consumption by heterotrophic consumers of 
the MeHg-containing microbial populations responsible for its 
formation, or the release of dissolved MeHg into water followed 
by its assimilation by phytoplankton and algae. MeHg uptake 
in diatoms mainly occurs passively in the form of uncharged, 
lipophilic MeHg-containing complexes (Mason et al., 1996).
 Because of the unique adaptations of microbial populations 
to cold environments (Methe et al., 2005), including their ability 
to adapt their membrane lipid assemblage to withstand low 
temperatures, it is possible that the availability and uptake rates 
of Hg species to microbes in the Arctic will differ substantially 
from those in other environments. Bacterial Hg uptake and 
methylation rates are poorly characterized for High Arctic lakes 
and marine systems. This information is critical to determine 
the capacity of microbial communities to transform inorganic 
Hg into MeHg in these extreme environments, which typically 
have low sedimentary organic matter contents that may be 
expected to limit methylation rates. Highly elevated MeHg 
concentrations – up to 3 ng/L – were found in water of shallow 
ponds on Ellesmere Island, probably due to relatively warm 
water temperatures and abundant organic matter driving 
higher bacterial activity (St. Louis et al., 2005). This example 
demonstrates the Hg accumulation and methylation potential 
of Arctic microbial communities under favorable conditions.

3.4. What role does methylation/
demethylation play in controlling 
mercury accumulation rates in Arctic 
food chains?

3.4.1. Methylmercury production pathways

A recent review identified the main biochemical Hg 
methylation pathways (Barkay and Poulain, 2007), which are 
for the most part linked to microbiological activities. There 
are several possible environmental sources of MeHg but few 
studies have measured production rates from these various 
sources in Arctic environments especially in marine settings. 
In temperate aquatic environments, wetlands and benthic 
sediments are major MeHg sources and this is thought to 
be due to the activity of sulfate- and iron-reducing bacteria 
in these anoxic environments (Gilmour et al., 1992; Fleming 
et al., 2006; Kerin et al., 2006). MeHg can also apparently 
be produced during detrital remineralization in oxic marine 
waters, associated with mid-depth nutrient maxima and 
oxygen utilization (Sunderland et al., 2009; Cossa et al., 
2009). A nutrient maximum is pervasively associated with 
haloclines in the Arctic Ocean, especially in Canada Basin, 
but it remains unknown whether Arctic haloclines contain 
important reservoirs of MeHg or whether this Hg enters food 
webs. However, it is striking that high MeHg concentrations 
occur in lower levels of the food web in Canada Basin (Stern 
and Macdonald, 2005), and in higher trophic level animals 
like the Beaufort beluga population which ranges into Canada 
Basin (Loseto et al., 2008b).
 Another possible source of MeHg is the atmospheric 
photo-reduction of volatile DMHg evaded from seawater 
and lakes (Niki et al., 1983a,b; St. Louis et al., 2005, 2007; 
Constant et al., 2007). Production of DMHg by pure cultures 
of Antarctic marine bacteria (Pongratz and Heumann, 1999), 
and by macroalgae isolated from an Arctic fjord (Pongratz 
and Heumann, 1998), has been demonstrated. Recent work 
on Arctic seawater (Kirk et al., 2008) as well as many studies 
in the Atlantic and Pacific Oceans (Mason and Fitzgerald., 
1993, 1995; Cossa et al., 1997) suggests that DMHg can also be 
produced in deep marine waters. Supersaturation of Arctic 
surface seawater over a wide area by DMHg (St. Louis et al., 
2007; Andersson et al., 2008) and the presence of elevated GEM 
in the marine boundary layer in areas rich in sea ice (Sommar 
et al., 2010) point to the potential importance of this process in 
the Arctic MeHg cycle. Other possible mechanisms of MeHg 
production, such as methylation of Hg(II) in snowpacks 
through abiotic processes (Gårdfeldt et al., 2003) or by aqueous 
phase methylation in the atmosphere (Hammerschmidt et al., 
2007) may occur but their significance is unknown.
 Although all of these processes also occur in temperate and 
tropical oceans, the unique physiographic features of the Arctic 
described earlier suggest that the relative rates and specific 
characteristics of these processes could be different in this region. 
Loseto et al. (2004b) showed that MeHg concentrations increased 
100-fold in Arctic wetland soils, after thawing and incubating 
at typical Arctic summer temperatures (4 to 8 °C). While 
sulfate-reducing bacteria are thought to be the predominant 
MeHg producers in temperate anoxic environments, the genes 
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responsible for dissimilatory sulfate-reduction could not be 
detected from all the wetland sites studied by Loseto et al. 
(2004b). This suggested either a methodological issue, or 
that sulfate-reducers are in fact not the dominant microbial 
methylators in Arctic wetlands. Hammerschmidt et al. (2006) 
investigated the biogeochemical cycling of MeHg in lakes and 
tundra watersheds of Arctic Alaska (68° N). They concluded that 
the principal source of MeHg was in situ benthic production 
(80% to 91% of total inputs), and that the contributions from 
the tundra watershed snowpack and soils were modest. Oiffer 
and Siciliano (2009) evaluated the potential for wet sedge 
meadow soils on Trulove lowlands (75° N), typical of Arctic 
landscapes, to act as sources or sinks for MeHg. Significant 
methylation occurred after inorganic Hg(II) was added to 
the soil. This finding, together with Hammerschmidt et al.’s 
(2006) conclusion that benthic MeHg production in Alaskan 
lake sediments was inorganic Hg-limited, suggests that there 
is a potential for relatively high production of MeHg in Arctic 
wetland soils and sediments during spring melt when a flush 
of inorganic Hg enters these systems.
 In contrast to Hammerschmidt et al.’s (2006) Alaskan 
study, investigations at Kuujjuarapik (55° N) on Hudson Bay 
suggest that tundra ecosystems there may represent a significant 
source of MeHg to aquatic systems (Constant et al., 2007). 
Snow samples collected at three different stations on the Great 
Whale River and in the tundra were characterized by different 
MeHg levels, with the highest concentrations at the tundra site. 
During the snow melt period, MeHg concentrations observed 
at this sampling site reached 700 pg/L, significantly higher 
than has generally been reported in Arctic snow (Poissant et 
al., 2008 and references therein). Correlation between MeHg 
snow concentrations and heterotrophic bacteria abundances, 
and the increasing proportion of MeHg during the snow 
melt period, suggested the presence of an active microbial 
methylation process within the snow cover. However, further 
investigations are needed to estimate the relative contributions 
by in situ production and atmospheric deposition to MeHg 
levels in snow.

3.4.2. Methylmercury destruction pathways

Photo-decomposition of MeHg may be an important process in 
the Arctic summer when nearly continuous sunlight prevails, 
although there are few data available with which to evaluate 
its overall role. In four Alaskan lakes, Hammerschmidt and 
Fitzgerald (2006a) calculated that the annual loss of MeHg 
to photo-decomposition, although limited to about a 100-day 
ice-free season, accounted for 66% to 88% of total MeHg inputs 
annually. At Kuujjuarapik, MeHg originating from marine 
sources appeared to be unstable in the snow cover, as 15% to 
56% of the MeHg was lost overnight (Constant et al., 2007). 
Night-time demethylation reactions involving nitrate radicals 
were proposed as the mechanism but need to be confirmed.

3.5. How do trophic processes influence 
mercury levels in higher order animals?

3.5.1. Introduction

Mercury concentrations in higher trophic level organisms 
(Figure 3.6) can be affected by ‘bottom-up’ or ‘top-down’ trophic 
processes. Those known to influence Hg in higher order animals 
include: (i) initial MeHg concentrations entering the biota at 
the bottom of the food web (bottom-up); (ii) species-specific 
characteristics such as growth rates, age, size, and Hg elimination 
rates that impact bioaccumulation or biodilution (bottom-up); 
(iii) the food web structure and/or guild that defines the transfer 
of energy and Hg among trophic levels and/or between food 
webs, such as benthic-pelagic coupling (bottom-up); and (iv) 
predator behavior defining diet and feeding ecology (top-down).
 Methylmercury concentrations increase over time 
(bioaccumulate) in an animal, and increase by up to an 
order of magnitude or more at each successive trophic level 
(biomagnify). Diet is the main source of MeHg for higher-
order consumers (e.g., invertebrates, fish, mammals; Hall 
et al., 1997; Tsui and Wang, 2004; Loseto et al., 2008a). In 
general, trophic interactions (predator-prey relationships) and 
the initial Hg concentration at the base of food chains may 
be most influential in determining the pathway and transfer 

Figure 3.6. The processes affecting Hg concentrations in a high trophic level species. Food web interactions determine the sources, bioaccumulation and 
biomagnification of Hg (in the form of MeHg). Dietary preferences are shaped by many factors including the sex, size, age, and reproductive status of an 
animal. These in turn dictate energy requirements as well as social behavior that together describe the habitat use. Figure modified from Loseto (2007).
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rate of MeHg into higher trophic level species (Watras and 
Bloom, 1992; Cabana and Rasmussen, 1994). MeHg strongly 
bioaccumulates in organisms because it is efficiently assimilated 
into tissues and only slowly eliminated from the body (Headon 
et al., 1996; Lawson and Mason, 1998). The growth rates of 
consumer animals also affect their accumulation of MeHg. 
Individuals with slower growth rates tend to have higher MeHg 
concentrations because less biomass is produced per unit of 
Hg consumed – the so-called ‘biodilution effect’ (Kidd et al., 
1999; Karimi et al., 2007).
 Once MeHg has been incorporated into microbial 
communities at the base of the food chain, subsequent 
biomagnification factors for MeHg concentrations at 
successively higher trophic levels range from about 4 to 10 
(Atwell et al., 1998; Campbell et al., 2005; Loseto et al., 2008b; 
see Figure 3.5). Using δ15N to infer the trophic positions of 
species, Campbell et al. (2005) reported log concentration – 
δ15N relationship slopes of 0.197 and 0.223 for THg and MeHg, 
respectively, in the marine food web of the Northwater Polynya, 
Baffin Bay. A similar slope for the log THg – δ15N relationship 
(0.20) was reported for the adjacent Lancaster Sound food 
web (Atwell et al., 1998). Campbell et al. (2005) noted that 
the regression slopes of these Arctic marine examples were 
remarkably similar to others in different systems, and concluded 
that …MeHg is biomagnified through these diverse food webs, 
as measured by δ15N, regardless of productivity (eutrophic vs. 
oligotrophic), latitude (Arctic vs. tropical) or salinity (marine 
vs. freshwater) of the ecosystem.
 Because only MeHg is biomagnified, the fraction of MeHg 
increases progressively with trophic level, typically reaching 
over 90% of THg in the muscle tissues of predatory fish and 
other high trophic level species (Campbell et al., 2005; reviewed 
for freshwater ecosystems by Morel et al., 1998). In Arctic 
marine food webs the MeHg fraction is variable in zooplankton, 
ranging from 30% in the Beaufort Sea (Stern and Macdonald, 
2005; Loseto et al., 2008b) to 70% in Baffin Bay (Campbell et 
al., 2005), and demonstrates significant spatial and seasonal 
heterogeneity (Stern and Macdonald, 2005). Fish such as Arctic 
cod have 80% to 97% Hg as MeHg in the Beaufort Sea and its 
shelf, and 100% in Baffin Bay (Campbell et al., 2005; Loseto et 

al., 2008b). Despite these variations, the predicable increase in 
the MeHg fraction of THg up food chains demonstrates that a 
small increase in bioavailable MeHg at the bottom of the food 
web can result in relatively large increases in higher trophic 
level organisms. The previous examples are representative of 
pelagic systems. However, predators can feed in both pelagic 
and benthic ecosystems, or in near shore and offshore food 
webs, that differ in carbon sources, biogeochemical cycling and 
food web structure, all factors that can influence the trophic 
transfer of MeHg. Furthermore, oceanic processes can organize 
prey species spatially (e.g., along fronts, convergent zones, 
persistent polynyas, persistent upwelling) in ways that affect 
both Hg uptake into the prey and the likelihood that the prey 
will be consumed (e.g., Stern and Macdonald, 2005).

3.5.2. Bottom-up trophic processes in Arctic 
aquatic food webs

3.5.2.1. Marine food webs

Physical features influence biogeochemical cycling, ecosystem 
productivity and energy flow to top predators, and provide a 
basis for Hg trophic level transfer processes. The Arctic marine 
environment has several physical features that are considered 
here to evaluate Hg sources and food web dynamics. The 
coupling of food webs and carbon and Hg sources provides a 
framework for this approach. Mercury in the form of MeHg 
may enter the Arctic marine environment or be created within 
the environment via several possible sources that include: 
(i) atmospheric transport (AMDEs and other wet and dry 
processes) and deposition to snow, ice and open water; (ii) 
riverine input draining terrestrial sources; (iii) in situ sediment 
production; and (iv) in situ water column production 
(Macdonald and Loseto, 2010; Figure 3.7). How Hg and MeHg 
from these various sources enter food webs is determined 
by factors such as the relative bioavailability for uptake/
absorption and the seasonality and location of the organisms 
at the bottom of a food web. These dynamics define carbon and 
Hg or MeHg acquisition. With these potential sources in mind, 
the four major types of Arctic marine food webs are reviewed 
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to examine the pathways of Hg to higher trophic species. The 
food webs include: the sea ice-associated ecosystem (which has 
a predominantly atmospheric Hg source); the pelagic ecosystem 
(oceanic Hg source); the benthic ecosystem (with sediments 
the predominant Hg source); and the estuarine/shelf ecosystem 
(with riverine inputs dominating Hg deposition)(Figure 3.8). 
Although these four food webs are presented separately, there is 
a sea-ice–pelagic–estuarine–benthic coupling that complicates 
the interpretation of Hg food web sources and transfer to high 
trophic level species. The food webs presented include the 
potential prey items for higher trophic level species of the 
marine environment.

3.5.2.1.1. Sea-ice food webs

Sea ice and snow are receptacles for Hg deposited from the 
atmosphere. Sea ice may broadly be categorized as either fast 
ice, which is formed and melted annually and remains attached 
to the coast, or pack ice, which comprises floes of varied age and 
size. Ice algae grow in sea ice and provide the carbon source to 
fuel a sympagic (‘ice-associated’) food web. Ice algae contribute 
4% to 26% of total primary productivity in fast ice or annual sea 
ice (Legendre et al., 1992) and more than 50% in multi-year floe 
ice (Gosselin et al., 1997). Due to the challenges of collecting 
organisms associated with sea ice, data on Hg concentrations 
in species within this food web are extremely limited. To date 
there has only been one published measurement of Hg levels 
in sea ice algae; 0.015 µg/g dw (n=1) (Campbell et al., 2005).
 Organisms that feed on ice algae represent the next step in 
trophic transfer, and include calanoid copepods, nematodes, 
and the larvae of benthic polychaetes and gastropods (Horner, 
1985). Calanoid copepods (e.g., Calanus glacialis and C. 
hyperboreus) are the dominant Arctic marine zooplankton 
(Geynrikh, 1986; Springer et al., 1996; Auel and Hagen, 2002). 
Mercury concentrations in copepods were observed to decrease 
through the winter (~ 0.1 to 0.04 µg/g dw) in the Chukchi and 
Beaufort Seas and then to increase in the summer and autumn 
(Stern and Macdonald, 2005). MeHg levels were typically 30% 
of the THg (Loseto et al., 2008b).
 Gammaridean amphipods are the dominant macrofauna 
feeding under sea ice on detritus (e.g., ice algae, bacteria and 
crustacean remains; Poltermann, 2001). They represent an 
important energy and Hg link between the base of sea-ice food 
webs and higher trophic level predators that include Arctic 
cod (Boreogadus saida), ringed seals (Phoca hispida) and birds 
(Bradstreet and Cross, 1982; Craig et al., 1982; Bradstreet et 
al., 1986; Smith, 1987; Lonne and Gulliksen, 1989; Lonne and 
Gabrielsen, 1992). Gammarids in Lancaster Sound had Hg 
concentrations of 0.1 µg/g dw (Atwell et al., 1998).
 Arctic cod is thought to be a keystone species linking under 
ice food webs to many marine mammals and birds (Frost and 
Lowry, 1981; Bradstreet and Cross, 1982; Lonne and Gulliksen, 
1989; Lonne and Gabrielsen, 1992). Total Hg concentrations in 
Arctic cod collected under the ice in Amundsen Gulf / Franklin 
Bay averaged 0.38 µg/g dw, with 80% of the THg as MeHg 
(Loseto et al., 2008b). Similar levels were measured in winter 
in the Chukchi and Beaufort Seas (Stern and Macdonald, 2005).
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3.5.2.1.2. Pelagic food webs

Although atmospheric Hg deposition can occur directly onto 
open water, the seasonal sea-ice cover limits this pathway, 
especially in winter and early spring. Flaw leads or polynyas 
provide an opportunity for primary productivity to sustain 
local food webs (Hobson et al., 2002; Campbell et al., 2005). The 
overall primary productivity in flaw leads (<15% of the annual 
total) is considered to be relatively low (Horner and Schrader, 
1982; Hamel, et al., 2002), but these special open-water zones 
may provide early season nourishment coincident with peak 
Hg deposition (from AMDEs), thus facilitating the entry of 
Hg into food webs beyond what the area of open water alone 
might imply. For example, elevated Hg concentrations were 
found in moss and lichens on the coast downwind from an 
Antarctic polynya, which was presumed to be an AMDE effect 
(Bargagli et al., 2005). 
 As the Arctic warms in the spring and sea ice retreats, light 
and nutrients in the euphotic zone initiate phytoplankton blooms. 
Blooms tend to start earliest in the marginal ice zones and then 
progress toward the interior ocean, accounting for up to 50% 
of the total primary productivity in Arctic waters (Sakshaug, 
2004). In the central Arctic Basin, production under the pack ice 
is an order of magnitude lower than on the shelves (Gosselin et 
al., 1997; Sakshaug, 2004). Understanding this seasonal carbon 
source as it affects Hg bio-uptake is critical to quantifying this 
pathway of Hg to top predators. As the euphotic zone exhausts its 
nutrients, the blooms collapse to a deep chlorophyll maximum 
where food production continues (Lavoie et al., 2009; Granskog 
et al., 2007) with as yet unknown importance for Hg uptake.
 The main grazers of plankton and microzooplankton in 
the open water column are the marine calanoid copepods C. 
glacialis and C. hyperboreus (Mumm et al., 1998). Mercury 
measured in copepods ranged from 0.04 to 0.11 µg/g dw in the 
Chukchi and Beaufort Seas (Stern and Macdonald, 2005), to 
as low as 0.025 µg/g dw in the Northwater Polynya (Campbell 
et al., 2005). The hyperiid amphipod Themisto libellula, which 
is the dominant predator of calanoid copepods (Bradstreet 
and Cross, 1982; Lonne and Gulliksen, 1989), had Hg levels 
ranging from 0.06 µg/g dw in Lancaster Sound to 0.13 µg/g dw 
in Amundsen Gulf where MeHg (0.095 µg/g dw) was 75% of 
the total (Atwell et al., 1998; Campbell et al., 2005; Loseto et al., 
2008b). The east-to-west increase in THg and in the proportion 
of MeHg of THg may explain similar longitudinal differences 
at the next trophic level, in Arctic cod. Mercury concentrations 
in Arctic cod collected in ice-free summer waters ranged from 
0.2 µg/g dw in Lancaster Sound (Atwell et al., 1998; Campbell 
et al., 2005) to 0.4 µg/g dw in the Chukchi and Beaufort Seas 
(Loseto et al., 2008b; Stern and Macdonald, 2005). These 
concentrations are considerably higher than levels measured 
near Svalbard (0.05 µg/g dw; Jaeger et al., 2009).

3.5.2.1.3. Estuarine, nearshore and 
shelf-associated food webs

Slightly over 50% of the Arctic Ocean is continental shelf (Stein 
and Macdonald, 2004). Shelves receive large inputs of freshwater 
along with particulates, organic carbon and Hg (Serreze et al., 
2006; McGuire et al., 2009; Leitch et al., 2007). These inputs 
strongly affect the physical and biological oceanography of 

coastal regions (Carmack and Macdonald, 2002), but they 
also provide important controls on Hg pathways including its 
partitioning, speciation, vertical flux, burial and conditions for 
methylation. Because shelves are shallow (< 200 m), coupling 
with benthic food webs is important (see next section).
 No published values for Hg in Arctic nearshore 
phytoplankton were found in the literature. Zooplankton 
communities in shelf regions are numerically dominated 
by Psuedocalanus spp. yet biomass is dominated by Calanus 
hyperboreus (Darnis et al., 2008). Anadromous fish such 
as Arctic cisco (Coregonus autumnalis) and least cisco (C. 
sardinella) feed in the estuaries in the warm ice-free season 
and may migrate between freshwater systems to spawn and/or 
overwinter (e.g., the Mackenzie Delta of Canada and Prudhoe 
Bay in Alaska; Gallaway et al., 1983; Fechhelm et al., 1991). 
Nearshore fish such as rainbow smelt (Osmerus mordax), Pacific 
herring (Clupea pallasii), Arctic cisco and least cisco occurring 
along the Mackenzie Shelf had Hg levels below 0.2 µg/g dw 
(with the exception of saffron cod, Eleginus gracilis), of which 
MeHg accounted for 78% to 94% of THg in adult fish (Loseto et 
al., 2008b). Arctic cod had similar Hg levels to other continental 
shelf fish, which were significantly lower than Hg levels in 
Arctic cod offshore (Loseto et al., 2008b).
 An open question remains as to whether effects or processes 
associated with rivers and estuaries amplify or attenuate Hg 
entry into resident biota. Estuarine shelf food webs may obtain 
Hg not only from atmospheric deposition, but also from shelf-
basin water exchange and riverine input (Leitch et al., 2007; 
Coquery et al., 1995). In the case of the Beaufort Shelf, Leitch 
et al. (2007) estimated an annual delivery of 2.2 t/y of THg and 
15 kg/y of MeHg by the Mackenzie River alone. Rivers clearly 
provide a conduit for terrestrial Hg and MeHg from wetlands 
and snowmelt (Loseto et al., 2004b) to enter estuaries. Arctic 
rivers also provide DOC, POC and suspended sediment, which 
may sequester Hg and MeHg thus preventing their entry into 
estuarine food webs. Lower Hg levels in copepods, zooplankton 
and Arctic cod in the shallow Mackenzie Shelf area than in the 
offshore pelagic environment suggest that factors other than 
the Hg supply by the Mackenzie River explain the nearshore/
offshore differences (Loseto et al., 2008b).

3.5.2.1.4. Benthic deep-ocean and 
shallow-shelf food webs

The main source of energy to benthic and epibenthic food webs 
is particulate organic material that settles from the strongly 
seasonal primary pelagic production (O’Brien et al., 2006). 
The quality and quantity of settling particulates along with 
bottom substrate (e.g., sand, silt, clay) determine the faunal 
community (Forest et al., 2007). To some degree, nearshore and 
shelf benthos take advantage of POC from riverine discharge 
in addition to the ice-associated primary productivity and 
grazer production (Schell, 1983; Goñi et al., 2005; Garneau et 
al., 2006). Due to ice scouring, which occurs most prevalently 
in 10 to 50 m water depth in association with flaw leads (e.g., 
Carmack and Macdonald, 2002), faunal composition is patchy 
and continually undergoing community succession (Conlan 
et al., 1998). Of special interest regarding Hg is the potential 
for producing localized anoxic conditions in scour marks that 
contain dense, salty water produced by ice formation (Kvitek 
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et al., 1998). These areas could provide an as yet unevaluated 
source of Hg methylation.
 Invertebrates occupy the benthos and epibenthos, including 
echinoderms (brittle stars), decapods, amphipods, isopods, 
crabs, molluscs, and polychaetes, most of which are poorly 
studied from a Hg perspective. Invertebrates can increase 
MeHg exposure by burrowing and dwelling in anoxic sediments 
(Coelho et al., 2008). Most benthic invertebrates are not thought 
to be key species for high trophic marine mammals, with the 
exception of the bivalves Macoma spp. and Mya truncata that 
are important prey items for walrus (Odobenus rosmarus) and 
bearded seal (Erignathus barbatus). M. truncata in Lancaster 
Sound had Hg levels comparable to other primary consumers 
at 0.07 µg/g dw (Atwell et al., 1998).
 Demersal fish are important prey items for higher trophic level 
animals. For example, the Greenland halibut/turbot (Reinhardtíus 
híppoglossoides) as well as Arctic cod and Pacific cod (Gadus 
macrocephalus) that spend time in deep water regions are 
important prey items for narwhal (Monodon monoceros). Other 
demersal fish include sculpins whose Hg concentrations range 
from 0.24 µg/g dw in Lancaster Sound (Atwell et al., 1998) to 
0.59 µg/g dw in the Beaufort Sea (Loseto et al., 2008b). Some 
of the higher concentrations in benthic species such as sculpins 
and shrimp may be a function of factors including trophic 
level, and their dependence on a food web whose base source 
of Hg may be high due to dwelling in anoxic sediments. These 
organisms may also ingest re-suspended matter, which can be 
highly heterogeneous in both carbon and Hg content.

3.5.2.2. Freshwater food webs

Bottom-up trophic processes appear to play a particularly 
important role in controlling MeHg levels in Arctic freshwater 
food webs. In general, inorganic Hg loading and its subsequent 
methylation by bacteria in sediment are key processes that affect 
Hg levels in freshwater ecosystems (Benoit et al., 2003). In a 
temperate whole-ecosystem experiment that used additions 
of stable Hg isotopes to trace the movement of Hg, fish MeHg 
concentrations responded rapidly to inorganic Hg deposited 
directly onto the lake surface (Harris et al., 2007). On a broad 
geographic scale, a study of wild fish populations in the United 
States found that about two-thirds of the geographic variation 
in Hg levels of largemouth bass (Micropterus salmoides) 
was related to the rate of wet atmospheric Hg deposition 
(Hammerschmidt and Fitzgerald, 2006b). Similarly, MeHg 
bioaccumulation in an aquatic invertebrate (mosquitoes) was 
positively correlated with wet atmospheric Hg deposition across 
a latitudinal gradient in North America that included Alaska 
(Hammerschmidt and Fitzgerald, 2005). In Alaskan lakes, 
sediment production of MeHg is limited by the availability of 
porewater inorganic Hg (Hammerschmidt et al., 2006).
 Currently available data from the High Arctic indicate a 
significant but weak link between watershed Hg loading and 
freshwater food web accumulation of Hg. In the High Arctic, 
snowmelt from the watershed is the largest source of THg to lakes 
(Semkin et al., 2005). Mercury levels in Arctic char from 19 lakes 
were positively correlated with watershed to lake area ratios, which 
explained about one-quarter of the variation in length-adjusted 
Hg concentrations in fish (Gantner et al., 2010b; see Section 
3.5.3.2). Chételat et al. (2008) found that MeHg concentrations 

in aquatic invertebrates (Diptera, Chironomidae) from 22 lakes 
and ponds were only weakly correlated to measures of Hg supply 
(i.e., watershed to lake area ratios, MeHg concentrations in water 
and sediment). Sites in that study had consistently low levels of 
MeHg in sediment and water along a gradient in THg loading 
from the watershed, suggesting that MeHg production in the 
High Arctic may be limited by environmental factors other than 
inorganic Hg(II) supply.
 Three studies in different Arctic regions of North America 
indicate that freshwater invertebrates can vary considerably 
in their MeHg concentrations, from 3 to 414 ng/g in Alaska 
(Hammerschmidt and Fitzgerald, 2005), the Canadian 
Northwest Territories (Evans et al., 2005b), and the Canadian 
Arctic Archipelago (Chételat et al., 2008). This variation may 
be due to the trophic level of the invertebrates (Cremona et 
al., 2008), variable MeHg supply to their food webs (Watras 
et al., 1998), and/or taxonomic differences (Chételat and 
Amyot, 2009). Taxonomic composition can be an important 
determinant of MeHg bioaccumulation in zooplankton 
communities in the Canadian High Arctic; different species 
vary several-fold in their MeHg concentrations despite low 
levels of Hg in the water (Chételat and Amyot, 2009).
 Freshwater fish in Arctic lakes of Alaska, Canada and 
Greenland often have elevated Hg concentrations relative to 
government-established guidelines for human consumption 
(Rigét et al., 2000; Lockhart et al., 2005a; Jewett and Duffy, 
2007). The higher Hg concentrations (> 0.5 to 1 mg THg/g 
ww) are typically found in predatory species that feed at higher 
trophic levels, such as lake trout (Salvelinus namaycush), 
northern pike (Exos lucius), walleye (Stizostedion vitreum), 
and Arctic char (Lockhart et al., 2005a). Fish populations 
in the Arctic are often older (due to low fishing pressure) 
and have slower growth rates compared with populations at 
lower latitudes, and these factors contribute to enhanced Hg 
bioaccumulation (Evans et al., 2005b).

3.5.3. Case studies of top-down trophic 
influences on biotic mercury levels

Predators can exert a top-down influence on biotic Hg 
concentrations depending on their feeding ecology and diet 
preferences (Loseto et al., 2008b; Young et al., 2010), which 
relate to the animals’ size, age, sex and reproductive status. 
These in turn influence energetic demands, social behavior and 
habitat use (see Figure 3.6). While dietary breadth and trophic 
level help describe contaminant exposure there is often a large 
spatial component to foraging in high trophic level species. 
For example, many marine mammals have large home ranges, 
can undergo extensive migrations, and may seasonally feed in 
different ecosystems. This complicates the interpretation of Hg 
exposure and the associated risks.
 Variability in energy requirements within and among species 
that feed at similar trophic levels may be manifested by differences 
in feeding behavior. Several studies have tested for the effects 
of sex and age in marine mammals (Deh n et al., 2005) and 
fish (McIntyre and Beauchamp, 2007) on contaminant loads. 
Evaluating size effects on contaminant loads is difficult to assess 
accurately in mature birds and mammals because after they reach 
maturity they do not continue to grow (as fish typically do). 
Changes in feeding behavior and energy requirements, inferred 
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from stable C and/or N isotopic composition of tissues (e.g., 
Tucker et al., 2007), can influence a population’s Hg accumulation 
(Atwell et al., 1998; Loseto et al., 2008a). For example, δ13C and 
δ15N values revealed a switch of polar bear (Ursus maritimus) 
diet from sympagic to pelagic food webs, which resulted in 
an increase in Hg levels in the bears (Horton et al., 2010). The 
following sections explore these top-down effects in two well 
studied high trophic level Arctic species: beluga and Arctic char.

3.5.3.1. Eastern Beaufort Sea beluga

High Hg levels have been reported in Beaufort Sea beluga 
compared to other Arctic populations (Lockhart et al., 2005a). 
This led to several studies focused on the habitat use and diet 
preferences of this beluga population, along with its associated 
food webs (guild and trophic transfer of Hg). Using satellite 
telemetry data on beluga matched with physical environmental 
features (e.g., sea ice, bathymetry), the Beaufort Sea population 
was found to sexually segregate during summer (Loseto et al., 
2006). Three summer habitat use groups were defined on the basis 
of length, sex and reproductive status. Intra-species segregation 
over time and space, relating to different requirements (Stevick et 
al., 2002), has consequences for feeding ecology and Hg exposure 
in the beluga (Loseto et al., 2008a). With this in mind, prior 
knowledge about Beaufort Sea food webs was coupled with 
beluga habitat use groups to characterize Hg exposure among 
different sex and size classes (Loseto et al., 2008b).
 The feeding groups were hypothetical, yet they provided 
a framework to begin merging predator behavior and food 
web dynamics with the aim of explaining beluga Hg levels. 
Results from this analysis demonstrated the importance of 
Hg concentrations at the bottom of the food web, and of food 
web length, in explaining beluga Hg levels. They also showed 
that benthic food webs were complicated by heterogeneous 
food sources and potentially different mechanisms driving 
bioaccumulation and biomagnification. In contrast to 
previous suggestions, the riverine source of Hg and MeHg 
to the Mackenzie Delta (see Leitch et al., 2007) did not result 
in high concentrations in the estuarine-shelf food web, and 
beluga believed to feed there had the lowest Hg levels of the 
overall population. Beluga thought to feed on the epibenthic 
and Amundsen Gulf pelagic food webs had the highest liver 
and muscle Hg levels (Loseto et al., 2008b).
 To investigate feeding behavior further, dietary fatty acid 
biomarkers were measured together with carbon and nitrogen 
stable isotopes, and Hg in liver and muscle tissues. The results 
revealed a strong relationship between beluga size and diet, 
and suggested the existence of dietary differences among size 
classes and habitat use groups (Loseto et al., 2008a). Fatty acids 
indicated that overall the beluga diet was dominated by Arctic 
cod and poor in benthic prey (Loseto et al., 2009). However, 
size-related dietary differences were evident, with larger beluga 
preferring offshore Arctic cod, and smaller beluga feeding on prey 
including Arctic cod in nearshore habitats. Unlike fish, beluga 
reach an asymptotic length at a certain age, and subsequently 
feed in relation to their size rather than age (Loseto et al., 2008a). 
If these size-related trends can be explained by energetics, then 
the large males may need to maintain body mass by adjusting 
foraging behavior to feed either on energy-rich prey, or feed 
more often (Le Bouef et al., 2000). If so, the beluga pattern 

suggests a greater abundance or availability of Arctic cod in 
pelagic offshore regions of the Arctic Ocean.
 To summarize, factors such as predation, resource selection, 
and nursing that influence the habitat use of higher trophic 
level species like beluga also relate to differential feeding 
strategies and to dietary Hg exposure. Questions that remain 
unresolved include the reason for the unexpected variation in 
Hg concentrations in Arctic cod and its associated food web, 
which were highest in offshore fish and lowest in the nearshore 
environment. Given the high Hg and MeHg inputs from the 
Mackenzie River, the opposite trend would be expected. Thus, 
it is hypothesized that Mackenzie River inorganic Hg and/
or MeHg may not be bioavailable upon entering the Delta, 
but rather may be deposited and re-distributed, perhaps to 
the biologically active shelf break where Hg may become 
bioavailable for methylation and/or MeHg may be available 
for uptake in the offshore food web.

3.5.3.2. Landlocked Arctic char

Arctic char is used internationally as a sentinel species to 
detect spatial distributions and temporal trends of Hg in Arctic 
fresh waters (AMAP, 2005). Lakes in the Canadian Arctic 
Archipelago have simple food webs in which Arctic char are 
often the only species of fish present, feeding primarily on the 
dominant benthic invertebrate – chironomids (Guiguer et 
al., 2002; Gantner et al., 2010a). Between 2005 and 2007, Hg 
biomagnification was investigated in the food webs supporting 
landlocked Arctic char populations in the following locations: 
on Ellesmere Island (n=4), Cornwallis Island (n=9), Victoria 
Island (n=1), Kent Peninsula (n=3) and Ungava Peninsula (n=1) 
(Gantner et al., 2010a). The sites covered a latitudinal gradient 
from 61° to 82° N. The study included full food web sampling 
of Arctic char, periphyton, zooplankton, benthic invertebrates, 
and ninespine stickleback (Pungitius pungitius) at each lake, as 
well as sediment and surface water samples. All biota, sediment, 
and water samples were analyzed for MeHg and THg, as well 
as stable isotopes (δ15N and δ13C). Trophic relationships were 
inferred from the isotopic data, and food chain length and 
trophic magnification factors for Hg were determined.
 The main finding of the study was that benthic invertebrates 
(mainly chironomid larvae and pupae) were the main source 
of nutrients, and thus also of MeHg and THg, in the char. 
Chironomids undergo metamorphosis and their MeHg 
concentrations increase during growth from larvae to pupae 
to adults (Chételat et al., 2008). As a result, chironomid larvae, 
pupae and adults are quantitatively different sources of MeHg, 
and differential consumption of these stages may affect Hg 
uptake by char. Pelagic zooplankton contributed very little to 
the diet, or to MeHg or THg levels of the fish. Surprisingly, 
trophic magnification factors, which assume linear Hg uptake 
based on the trophic level of all food web organisms, were not 
predictive of MeHg and THg concentrations in adult fish.
 There was evidence of differential consumption of 
chironomid stages by char based on stomach content analyses 
in the Arctic Archipelago by Stewart and Bernier (1982). Of 212 
char investigated in this survey, the majority consumed larvae 
(82%) while pupae and adult chironomids were consumed 
in lesser amounts (52% and 11%, respectively). However, on 
Cornwallis Island, adult chironomids were generally not 
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present in char stomachs in the past (Stewart and Bernier, 
1982) or recently (Gantner et al., 2010a), although they were 
consumed in Char Lake (Hobson and Welch, 1995). Recent δ15N 
data on insectivorous char show low variability in THg and 
δ15N among Cornwallis Island lakes (Gantner et al., 2010a,b). 
On Ellesmere Island, larger char fed selectively on pupae at 
the lake surface during the period of emergence, while smaller 
char (< 20 cm) inhabited very shallow areas, feeding mostly on 
chironomid larvae (Parker and Joh nson, 1991).
 Life stage-related differences in habitat use and diet of the 
fish, which exposed them to different stable N isotope ratios 
and MeHg concentrations among larval, pupal, and adult 
chironomids (Chételat et al., 2008), could explain some of the 
variability in δ15N and Hg concentrations of char, particularly 
the differences between juvenile and adult fish. Younger char 
that often inhabit the littoral zone may feed more on larvae 
(Rigét et al., 1986), which is also evident from lower MeHg 
concentrations and more depleted δ15N signatures in juvenile 
char from Cornwallis Island lakes (Gantner et al., 2010a). The 
proposed effect of differential feeding behavior of adult char 
(Chételat et al., 2008) on their Hg levels can not currently be 
distinguished from the effect of opportunistic cannibalism, a 
factor that is known to contribute greatly to variability of δ15N 
(and thus Hg) in char (Hobson and Welch, 1995; Guiguer et 
al., 2002; Gantner et al., 2009). In Cornwallis Island lakes the 
variability of δ15N (and Hg) in insectivorous char in which 
no cannibalism was observed is small (δ15N 2 SD = 0.3‰ to 
0.8‰), and higher in other lakes with observed opportunistic 
cannibalism (2 SD up to ~2.4‰).
 Cannibalism played an important role in Arctic char Hg 
levels in a lake on Svalbard (Rognerud et al., 2002). The highest 
concentrations were observed in piscivorous Arctic char (0.04 
to 0.44 µg/g ww), whereas the invertebrate-feeding Arctic char 
had significantly lower concentrations. Cannibalism was the 
major force structuring age and length class distribution of the 
population. Stable isotope analysis indicated that the oldest 
fish were tertiary consumers, living on smaller piscivorous 
individuals. It was concluded that biomagnification in the food 
chain, fish longevity and growth rates were the most important 
variables explaining char THg concentrations and variability.
 Chételat and Amyot (2009) proposed that an increase in 
the abundance of Hg-rich Daph nia in High Arctic lakes could 
lead to an increase in Hg accumulation in char. The potential 
colonization by Daph nia of a High Arctic lake could lead to 
a shift in energy and Hg transfer from the benthic to pelagic 
pathway, and to an increase in Hg transfer to char. Meretta Lake 
(Cornwallis Island) provided an opportunity to examine this 
hypothesis because anthropogenic eutrophication resulted in 
the proliferation of Daph nia in the lake’s water column. Meretta 
char were significantly younger, larger, and heavier than char 
from other Cornwallis Island lakes, but they were comparable 
in their δ15N values (implying similar trophic position). Based 
on the δ13C values of zooplankton, chironomids and char, the 
diet of adult char was about 50% zooplankton and 50% benthic 
chironomids. The appearance of Daph nia caused the pelagic 
transfer of Hg to become important in Meretta Lake, unlike 
the benthic-dominated food webs of other lakes. However, 
Daph nia consumption did not have a dramatic effect on Hg 
uptake by char, because Hg concentrations in Meretta fish were 
similar to those in other lakes within the same watershed that 

lacked Daph nia (Char and Resolute lakes). A growth dilution 
effect may have occurred, as Meretta char grew more rapidly 
than in other Cornwallis Island lakes probably because of 
the zooplankton prey available. In four southern and more 
productive lakes with diverse food webs on Kent Peninsula 
(69° N), char THg concentrations were lower than in the low 
productivity northern lakes (~75° N), which again could suggest 
a biodilution effect (Gantner et al., 2010b).
 The dominance of benthic prey in the char diet may mean 
that newly deposited atmospheric Hg is less likely to be directly 
reflected in Arctic char Hg concentrations. Responses of fish 
Hg levels to inputs from the surrounding environment may 
be delayed until Hg is taken up by chironomids from lake 
sediments. Overall, THg concentrations in landlocked Arctic 
char in the study lakes were significantly related to catchment-
to-lake area ratio, which emphasizes the importance of input/
loading of the surrounding landscape on Hg in lake food webs. 
THg in Arctic char were not related to THg in surface water or 
sediment, or to latitude or longitude. Thus, food web processes, 
specifically biomagnification, cannibalism and the chironomid 
diet, are key determinants of char THg concentrations.

3.5.4. Physiological factors determining 
dietary mercury exposure in predators

When evaluating Hg levels in high trophic level species 
such as marine mammals, many tissues can be selected for 
analysis. These range from skin, liver, fur, and muscle to brain 
and blood. To best evaluate the exposure or body burden in 
a high trophic level species, it is important to select the most 
appropriate matrix due to the different forms of Hg that occur 
in various tissues, and because of the different turnover rates 
associated with tissues (Loseto et al., 2008a). Understanding 
the organisms’ physiology is also critical when using other 
biomarkers such as stable isotopes (Hobson et al., 1993).
 To use beluga as an example, Hg concentrations in liver 
tissue typically correlate strongly with age due to the continuous 
internal demethylation of MeHg to inorganic Hg and the 
accumulation of mercuric selenide, a biologically unavailable 
complex (Farris et al., 1993; Wagemann et al., 1998). Therefore, 
the linear increase in liver Hg with age suggests that the additive 
processes of Hg bioaccumulation over time will complicate any 
attempt at interpretation of recent dietary Hg sources (Loseto 
et al., 2008a). In contrast, Hg concentrations in beluga muscle 
(known to be almost entirely MeHg) are most strongly correlated 
to animal length (Loseto et al., 2008a). This relationship suggests 
that muscle Hg concentrations reflect dietary Hg uptake and to 
a lesser extent bioaccumulation over time (Loseto et al., 2009). 
Larger beluga were either feeding at higher trophic levels or in 
different food webs with higher Hg sources. Conversely, age was 
not significantly correlated to muscle Hg levels (Loseto et al., 
2008a), as also occurs with Hg in ringed seal muscle (Atwell et 
al., 1998). Overall, muscle tissue is a better indicator of dietary 
Hg sources and the processes of Hg biomagnification driven 
by food web structure, while liver Hg best reflects age-related 
accumulation. Mercury concentrations in other tissues, such as 
muktuk (skin) in beluga, have strong linear relationships with 
muscle Hg (Wagemann et al., 1998), and this is also thought 
to apply to fur or hair in mammals (Young et al., 2001). This 
finding supports the use of skin biopsy or fur samples to estimate 
dietary Hg loads and body burdens in high order mammals.
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3.6. Do atmospheric mercury depletion 
events contribute to the increased 
mercury levels found in biota in 
different parts of the Arctic?
Atmospheric mercury depletion events provide a mechanism 
for rapid deposition of substantial amounts of GEM from 
the atmosphere to the frozen surface environment during 
polar sunrise (see Chapter 2), and have been hypothesized to 
contribute significantly to the high Hg levels in some Arctic 
biota (AMAP, 2005). However, it is now well established that 
the Hg deposited during AMDEs can be readily re-emitted 
from the snowpack (see Section 2.6.2). Establishing a link 
between AMDEs and enhanced Hg levels in Arctic biota is 
complicated partly by a poor understanding of the net outcome 
of the AMDE deposition pathway, and partly by the complex Hg 
biogeochemistry of aquatic ecosystems which contain inorganic 
Hg(II) from a variety of sources (of which AMDEs are but one) 
and methylate the inorganic Hg(II) into MeHg. Three lines of 
evidence pertaining to this question are reviewed here: the 
bioavailability of AMDE-deposited Hg; the amounts and fate of 
inorganic Hg inputs from AMDEs compared with those from 
other entry pathways; and comparison of the spatial patterns 
of AMDE occurrence and biotic Hg concentrations.
 A fraction of the Hg deposited by AMDEs in the Arctic has 
been reported to be bioavailable to microbes under controlled 
conditions. Using Vibrio anguillarum pRB28, a mer-lux reporter 
organism, as a Hg bioavailability indicator, it was found that 
exposure to melted Alaskan snow samples resulted in a positive 
signal in snow collected after AMDEs; 13% to 15% of the Hg in 
snow was bioavailable to this bacterium (Scott, 2001; Lindberg 
et al., 2002). In a similar study, melted snow samples collected at 
Kuujjuarapik, Quebec, were analyzed using a suite of bioassays 
involving living organisms or cells representative of three 
trophic levels (Gagné et al., 2009). Comparison of bioassay 
test responses of snow samples collected before and after 
AMDEs demonstrated that, following AMDEs, Hydra attenuata 
acute sublethality and rainbow trout (Oncorhynchus mykiss) 
hepatocyte acute cytotoxicity responses increased 1.6- and 4.4-
fold, respectively. Furthermore, an algal bioassay revealed that 
the growth of Pseudokirch neriella subcapitata was stimulated by 
snow collected before the occurrence of AMDEs, but inhibited 
in post-AMDE snow samples. These investigations provided 
interesting insights about the potential availability of deposited 
Hg to lower trophic level Arctic biota, but the actual significance 
of AMDEs remains to be demonstrated. Results from many 
Arctic locations suggest that in most locations about 80% of the 
total deposited Hg is photo-reduced to volatile Hg(0) and re-
emitted back to the atmosphere within a day or more following 
an AMDE (see Section 2.6.2). Hence, the fraction of newly 
deposited atmospheric Hg that is highly photoreactive may 
not be bioavailable to the microbes thriving in snow in polar 
spring (Amato et al., 2007).
 From the perspective of mass inputs, based on currently 
available data, AMDE Hg entering the upper Arctic Ocean 
and Hudson Bay is believed to contribute a relatively small 
amount to what are already large reservoirs of dissolved Hg 
(Outridge et al., 2008; Hare et al., 2008). According to a 
modified GRAHM model, a net amount of 45 t/y THg (46% 

of total annual atmospheric inputs) entered the Arctic Ocean 
during spring when AMDEs occur, compared to total inputs of 
206 t/y (Outridge et al., 2008). The springtime input includes 
other wet and dry Hg deposition not associated with AMDEs, 
thus 45 t/y is likely to be an overestimate of the AMDE input. 
The existing Arctic Ocean reservoir of dissolved THg of about 
7900 t (~950 t in the upper 200 m) is maintained as part of the 
global Hg cycle (through atmospheric and oceanic transport), 
and includes a natural background of Hg augmented during 
the past two centuries by human activities (Sunderland and 
Mason, 2007). Photo-reduction and evasion, export of water 
from the Arctic Ocean, and particle flux operate on the 
resident Hg(II), regardless of source, to remove it from the 
ocean’s surface waters. The intense seasonality of the Arctic 
environment appears to have a corollary in the seasonal net 
balance of AMDE Hg deposition and re-volatilization. On 
the basis of modeling of GEM measurements at the Zeppelin 
station, Svalbard, Hirdman et al. (2009) reported that the Arctic 
was a strong net sink region for GEM in spring (April and 
May), suggesting that Hg accumulates in the Arctic snowpack 
as a result of AMDEs. But for summer, the Arctic was a GEM 
source, probably as a result of evasion from the ocean during 
its open water season and (less likely) re-emission of previously 
deposited Hg as the snow and/or ice melts. The overall net 
balance between these periods was not reported.
 Processes in the water transform a proportion of the Hg(II) 
to MeHg which then becomes the component of exposure to 
biota. The methylation rate in Arctic marine systems is a poorly 
understood variable that is probably controlled by the ocean’s 
organic carbon cycle, itself highly variable in time and space. 
An important question that needs to be answered is whether 
or not AMDE Hg is in some way more prone to methylation 
than the resident Hg(II) (i.e., does AMDE Hg take a ‘fast track’ 
to biota?; see Harris et al., 2007; Macdonald and Loseto, 2010). 
In considering the MeHg burden in high trophic level species, it 
is therefore difficult to estimate which proportion derives from 
AMDEs, and which proportion derives from the now globally-
contaminated pool of Hg(II) cycling in the atmosphere-ocean 
system. It seems clear from comparative studies using biological 
samples pre-dating and post-dating the Industrial Revolution 
that global aquatic systems including the Arctic Ocean are 
contaminated with industrial Hg (see Section 5.2). It remains 
unclear whether AMDEs contribute significantly to making 
Arctic ecosystems especially vulnerable to the global Hg cycle, 
but post-depositional methylation processes must play an 
important and perhaps dominant role (Macdonald and Loseto, 
2010). There is a substantial knowledge base concerning Hg 
and Hg methylation processes at lower latitudes (Driscoll et al., 
1998; Galloway and Branfireun, 2004, and references therein). 
However, the applicability of these processes may be limited 
with respect to Arctic ecosystems (see Section 3.4).
 From a spatial perspective (the third line of evidence regarding 
AMDEs), the results from several studies provide contradictory 
evidence of a possible link between AMDEs and biotic Hg 
levels. Total Hg in moss has shown a pronounced tendency 
toward higher concentrations along the northwestern coast of 
Norway compared to areas further inland, since measurements 
started in 1985, a trend which appears to be particularly strong 
in the northernmost area (Steinnes et al., 2003; Steinnes and 
Sjøbakk, 2005). This trend is not due to higher wet deposition 
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along the coast. Measurements of GEM in the same region 
have indicated that this pattern could be due to transport of 
inorganic Hg from AMDEs to the mainland of Norway (Berg 
et al., 2008b). Coincident measurements of RGM are required 
before the extent of AMDE Hg contributions to moss can be 
firmly established. However, this study, and comparable findings 
of elevated Hg levels in moss and lichens adjacent to an Antarctic 
polynya where AMDEs could be expected to occur (Bargagli et 
al., 2005), suggest a significant role for AMDEs in contributing 
inorganic Hg to coastal terrestrial ecosystems.
 In contrast, a recent study in Alaska on mosquito MeHg 
concentrations revealed little variation and no gradient along 
a 200- km transect from the coast to inland areas, suggesting 
that springtime AMDEs along the coast had little impact on Hg 
bioaccumulation in these aquatic invertebrates (Hammerschmidt 
and Fitzgerald, 2008). High re-emission rates from snow to the 
atmosphere prior to snowmelt were suggested as a possible 
explanation. This finding is consistent with a large-scale spatial 
study which reconstructed atmospheric Hg deposition rates 
from the sediments of many lakes across Arctic Canada, and 
found no evidence for significant AMDE Hg loading in coastal 
lakes compared to those further inland (Muir et al., 2009).

3.7. What are the effects of organic 
carbon on mercury speciation, 
dynamics, and bioavailability?
Increasing evidence suggests that the speciation, dynamics, 
and bioavailability of Hg in aquatic systems are closely tied 
to the sources, composition, and dynamics of organic carbon, 
especially from aquatic sources. In terms of its ability to 
sequester or transform Hg, not all organic carbon is equal. 
Carbon in aquatic systems comes predominantly from external 
and internal sources – terrigenous plants and soil carbon, 
and algal production within the waterbody (McGuire et al., 
2009). These two sources of carbon exhibit a range of ages, 
chemical composition and lability (e.g., Goñi et al., 2005; Guo 
and Macdonald, 2006; Guo et al., 2007; Outridge et al., 2007; 
Kuzyk et al., 2008; Fu et al., 2009), which display different 
capacities to bind Hg (Sanei and Goodarzi, 2006). In Antarctic 
lakes, algal and cyanobacterial planktonic and benthic mats, 
along with terrestrial mosses in the watershed, are the main 
sinks for Hg in summer meltwater (Bargagli et al., 2007). The 
suggestion of fresh algal organic matter providing an important 
Hg complexation mechanism in Arctic freshwaters is further 
supported by the strong association between historical fluxes 
and concentrations of Hg and algal organic carbon in sediment 
cores from several Arctic lakes (Outridge et al., 2007; Stern et 
al., 2009; Carrie et al., 2010).
 Labile carbon also plays what is arguably its most crucial 
role of creating the circumstances to transform Hg(II) to MeHg, 
the form that presents almost all of the toxicological risk. The 
methylation process has long been known to occur in sub-
oxic environments, like sediments or stagnant basins, where 
inorganic Hg is converted to MeHg by sulfate-reducing bacteria 
metabolizing organic matter (Ekstrom et al., 2003; Lambertsson 
and Nilsson, 2006). In the Arctic marine environment, the 
sub-oxic environments are associated with estuarine, shelf 
and slope sediments where the labile organic carbon flux is 

sufficient to support a vigorous metabolism that overwhelms 
oxygen diffusion (e.g., Gobeil et al., 1997, 2001b). It has recently 
been discovered that remineralization of organic carbon can 
also generate MeHg within the water column, particularly at 
locations indicated by nutrient maxima (Sunderland et al., 
2009; Cossa et al., 2009). In summary, the organic carbon 
cycle provides the means to sequester Hg onto particles, 
transport them and assist burial through vertical flux, while 
the metabolism of organic carbon supports the transformation 
of Hg(II) to MeHg. There are other interactions between the 
organic carbon and Hg cycles that are not as well understood. 
For example, DOM may provide stabilizing ligands to maintain 
Hg in the dissolved form (e.g., Dong et al., 2010), and C-DOM 
absorbs UV radiation thus providing an important control on 
photo-reduction and other photo-initiated processes in surface 
water (Tseng et al., 2004; Poulain et al., 2007c).

3.8. What is the rate of long-term 
sequestration of mercury through 
burial in Arctic non-biological archives 
(sediments, soils and ice)?
For the purposes of this assessment, ‘long-term’ sequestration is 
defined as the removal of Hg from the biogeochemically active 
environment for periods likely to exceed several centuries. 
Over longer periods, from millennia to geological time scales, 
reworking of terrestrial archives, shallow coastal sediments and 
even deep ocean sediments by geomorphological processes 
associated with glacial / inter-glacial cycles and tectonic activity 
may remobilize long-term sequestered Hg. Table 3.1 summarizes 
the best available estimates of average areal rates and total masses 
of Hg sequestered by the various non-biological archives.
 Recent estimates of long-term sequestration rates for Hg 
in Arctic marine sediments are available for the Arctic Ocean 
(Outridge et al., 2008) and Hudson Bay (Hare et al., 2008), but 
comprehensive estimates are not available for terrestrial areas 
(soils and peatlands) or for marine sediments of the Canadian 
Arctic Archipelago, the Labrador Sea and Davis Strait, and the 
Greenland Sea. In the Arctic Ocean, an estimated sediment 
Hg flux of 95 t/y occurs in the continental shelf seas and 13 
t/y in the Central Basin for a total sequestration of 108 t/y. 
Sedimentation was the largest single loss pathway for Arctic 
marine Hg, representing 59% of the total ~182 t/y removed from 
the Arctic Ocean by all processes. It is also noteworthy that the 
shelf sequestration rate almost balanced the net atmospheric 
Hg input of 98 t/y, suggesting the possibility of a scavenging 
of deposited atmospheric Hg from the shelf water column 
into sediments (Outridge et al., 2008). In Hudson Bay, the 
situation is more complicated, because of an extraordinarily 
large resuspension and lateral transport of ancient glacier-
derived till material from shallow coastal waters into deeper 
waters. Ultimately, this process is related to ongoing post-glacial 
isostatic rebound of the regional landscape, together with wind 
and wave action as well as ice scour of inshore sediments. The 
estimated total sediment flux for the Bay was 147 ± 69 Mt/y, 
with a modern Hg sedimentation rate of 4.5 ± 3.2 t/y which 
includes a contribution of 1.7 t/y of Hg from the resuspended 
material (Hare et al., 2008). The modern sedimentary Hg flux 
(2.4 t/y) was estimated to be almost two-fold higher than in 
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pre-industrial times and, comparable to the Arctic Ocean, was 
about equal to increased inputs from atmospheric deposition 
and riverine flows. The balance between increased Hg inputs 
and increased sequestration implies that most of the modern 
increase in Hg inputs to the Bay was ultimately captured and 
buried in sediments (Hare et al., 2008).
 For freshwater sediments, estimates of focus-corrected 
modern Hg fluxes, averaged over recent decades, are available 
for 76 lakes from northern Canada (Lockhart et al., 1998; Muir 
et al., 2009), Alaska (Landers et al., 1998; Fitzgerald et al., 2005), 
West Greenland (Bindler et al., 2001a), northern Sweden (above 
60° N), Finland (above 60° N), and Russia (Landers et al., 
1998). These lakes gave an overall median modern Hg flux of 
11.5 µg/m2/y (mean ± SD, 20.3 ± 22.3 µg/m2/y; geometric mean 
= 12.7 µg/m2/y). Recent decadal rates in the Canadian Arctic 
have increased about two-fold on average over pre-1900 rates, 
believed to be due to the combined effects of pollution inputs 
(Muir et al., 2009), and increased transfer efficiency from the 
water column because of climate-driven increases in aquatic 
primary productivity and associated Hg scavenging (Outridge 
et al., 2007; Stern et al., 2009). A first-order estimate of THg 
mass sequestered in sediments was obtained by multiplying 
the median flux above by the total surface area of lakes in the 
circumpolar Arctic region. No precise figure is available for the 
AMAP area of interest. Smith et al. (2007) arrived at a GIS-
based estimate of 589 500 km2 for 202 756 lakes of 0.1 km2 or 
more in area lying north of 45.5° N (which is the southernmost 
extent of permafrost near James Bay, Canada). Although this 
figure is possibly an over-estimate for these purposes, in fact 
most of the lakes in this region occur within the AMAP area 
of interest because lake area as a fraction of unit land area 
is several-times higher in permafrost and glaciated terrains 
than in non-permafrost and non-glaciated landscapes, and 
are thus are concentrated in the north (Smith et al., 2007). 
The tendency towards over-estimation is also balanced by GIS 
tech niques consistently under-estimating the number and 
surface areas of lakes in a given area (Frey and Smith, 2007), 
and by the exclusion of waterbodies of less than 0.1 km2 in 
area from this compilation. Using these area data, the THg 
mass sequestered by Arctic freshwater sediments amounts to 
about 6.8 t/y. It is difficult to provide error estimates around 

this figure. However, even a 100% error would not alter the 
conclusion that freshwater sediments sequester a small amount 
of Hg relative to marine sediments, mainly because of the small 
total area that freshwater sediments represent (Table 3.1).
 Estimation of Hg sequestration in Arctic soils (including 
peatlands, as these are recognized as a soil type) is complicated 
by the fact that Hg in soils and peatlands may be subjected to 
significant remobilization by wildfires, freeze/thaw processes, 
wind action, erosion and runoff, and biological activity. Much of 
the Hg contained in the upper sections of a soil profile therefore 
may not be sequestered over the long-term. Furthermore, soil 
accumulation rates have not been estimated in Arctic regions but 
are known to be highly variable in temperate areas (Grigal, 2002). 
Vegetative cover is an important variable in soil Hg sequestration, 
with a proportion of the Hg contained in forest plants and their 
leaf litter derived from GEM in the atmosphere (Mason et al., 
1994; Grigal, 2003). Plants act as interceptors of Hg-bearing dusts 
and RGM (Poulain et al., 2007d). Consequently, Hg deposition 
rates to soils under forests and grasslands are estimated to be 
about 4-fold and 2-fold higher on average, respectively, than to 
adjacent lake surfaces (Grigal, 2002). Photo-reduction and re-
volatilization rates of deposited Hg are also several-times lower 
under trees than from adjacent sun-exposed areas (Poulain et 
al., 2007d). Soil organic matter content, which is closely allied 
to the degree and type of vegetation cover, is a strong controller 
of the Hg content of soils in the Northern Hemisphere, because 
of the strong binding of various Hg chemical forms with organic 
matter (Grigal, 2003). Data on THg concentrations in Arctic soils 
are sparse; Melnikov et al. (2002) reported mean soil Hg values 
from the Kola and Taymir Peninsulas and the Pechora Basin, 
Russia, ranging from 0.06 to 0.12 µg/g dw. However, without 
a better understanding of soil development and accumulation 
processes in the Arctic, sequestration rates cannot be derived 
from these concentration data. Grigal (2002) estimated the 
average soil THg accumulation rate for northern hemisphere 
temperate and boreal forest soils to be ~ 5 µg/m2/y. However, 
this estimate should be treated cautiously in relation to most of 
the High Arctic’s terrestrial areas which are sparsely vegetated; 
the actual value is likely to be significantly lower. Given these 
uncertainties, a total mass sequestration figure cannot be derived 
for Arctic soils.

Table 3.1. Areal rates and total masses of mercury sequestered annually in non-biological archives in the Arctic.

Archive Annual Hg flux,  
µg/m2/y

Total area,  
million km2

Annual Hg mass, t/y Data source

Marine sediments
 Arctic Ocean 11.3a 9.54 108 Outridge et al., 2008
 Hudson Bay 5.4a 0.84 4.5 Hare et al., 2008

Freshwater sediments 11.5b 0.6 6.9 See note b for areal Hg flux; total Arctic lake 
surface area – Smith et al., 2007

Terrestrial soils Grigal, 2002; Gorham, 1991; Steinnes and 
Sjøbakk, 2005; Shotyk et al., 2005b soils ~5 ?? ??

 peatlands 2 – 20c 3.5 7 – 70c

Ice caps and glaciers Mann et al., 2005; Boutron et al., 1998; 
Faïn et al., 2009b; St. Louis et al., 2005; 
Zdanowicz et al., 2009; Zheng et al., 2009

 Greenland Ice Sheet 0.1 1.69 0.17
 Other 0.1 0.31 0.03

a Calculated by dividing THg mass removed by surface area; see corresponding articles for details; b median modern flux calculated from 76 Arctic and 
sub-Arctic lakes reported by Lockhart et al. (1998), Bindler et al. (2001a), Fitzgerald et al. (2005) and Muir et al. (2009); c estimated range only, based 
on few data (see Steinnes and Sjøbakk, 2005; Shotyk et al., 2003, 2005b).
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 The large areal extent of circumpolar Arctic peatlands (about 
3.5 × 106 km2; Gorham, 1991), and their well-known capacity to 
accumulate Hg from the atmosphere and groundwater inflows 
(Shotyk et al., 2003, 2005b), suggests that both ombrotrophic 
and minerotrophic peat bogs could be significant regional Hg 
sinks. Unfortunately, few studies of modern Hg accumulation 
rates in Arctic or sub-Arctic peat bogs have been published. 
Steinnes and Sjøbakk (2005) reported average fluxes of 2.1 to 11.1 
µg/m2/y (median 4.3 µg/m2/y) over the past century for four peat 
bogs in Norway north of 60° N, whereas Shotyk et al. (2003) 
calculated a rate of about 14 µg/m2/y in southern Greenland 
in the 1990s after a rapid decline from a peak of 164 µg/m2/y 
in the 1950s, and Shotyk et al. (2005b) reported a flux of 16 µg/
m2/y in the late 1990s in a Faroe Islands peat deposit. Given the 
paucity of data, a range of areal rates of 2 to 20 µg/m2/y was 
used to constrain minimum and maximum values of 7 to 70 t/y 
for the THg mass sequestered. Thawing of peatlands contained 
within permafrost may also release significant amounts of 
this sequestered Hg into local watercourses, especially during 
recent decades (see Section 4.9.3), suggesting that much of the 
accumulated Hg is not stored over the long term.
 A small fraction of the Hg present in the Arctic atmosphere 
is removed and preserved in the accumulation area of glaciers 
and ice caps. This occurs partly through occlusion of GEM in 
interstitial spaces of the snow and firn (Faïn et al., 2008), and by 
the entrapment of particulate Hg (from dry and wet deposition) 
in the ice matrix itself (Dominé and Shepson, 2002). Because 
mean GEM concentrations in Arctic air are low (< 1 to 2 ng/m3) 
and the volumetric fraction of air in glacial firn at the pore-close 
off depth is less than 10%, the second process is by far the most 
important for sequestering Hg in ice. The Hg trapped in ice 
can remain stored for decades to millennia depending on the 
size, regime, turnover rate, and mass balance trend of glaciers. 
Data on Hg levels in circumpolar Arctic glaciers are scarce, but 
published figures only vary within the narrow range of about 
0.5 to 2 ng/L in recent (< 10-yr old) firn layers (Boutron et al., 
1998; Mann et al., 2005; St. Louis et al., 2005; Faïn et al., 2008; 
Zdanowicz et al., 2009; Zheng et al., 2009). Since the mean Hg 
levels are similar, geographic differences in sequestration rates 
are largely determined by net ice accumulation rates at these 
sites. The present sequestration rate of Hg in central Greenland 
firn can be estimated at about 0.1 µg/m2/y for reactive Hg, or 
about 1.0 µg/m2/y for THg (Mann et al., 2005; Faïn et al., 2008). 
For Canadian Arctic ice caps the sequestration rate for HgR is 
0.1 to 0.2 µg/m2/y (St. Louis et al., 2005; Zdanowicz et al., 2009; 
Zheng et al., 2009).
 Using an average net Hg accumulation value of 0.1 µg/m2/y, 
and the sum accumulation area of Arctic glaciers and ice caps 
(Dyurgerov and Meier, 2005; Bahr et al., 2009), it is estimated 
that a net mass of about 0.2 t/y Hg may be sequestered annually 
in Arctic glaciers and ice caps, of which more than 80% may 
be stored in the Greenland Ice Sheet. Alaskan glaciers were 
excluded from this computation because their accumulation 
rates and areas are poorly constrained. The ice archive is thus 
a very small sink of THg, both in areal rate and total mass 
sequestered, compared to other non-biological archives and 
particularly marine sediments (Table 3.1). Furthermore, at 
least some of the Hg presently stored in glacial ice may be 
prematurely released as Arctic glaciers diminish under a 
warmer climate (see Section 4.9.1).

3.9. Conclusions and recommendations
Conclusions (in numbered bullets) are organized under section 
headings, followed by knowledge gaps/recommendations in 
italics when appropriate.

What is the fate of net deposited atmospheric mercury in 
the various environmental media?

1. Most of the Hg entering aquatic and terrestrial ecosystems 
following atmospheric deposition is in inorganic (Hg(II)) 
forms. Present knowledge suggests that the small amount 
of monomethyl-Hg (MeHg) found in snowpacks prior to 
spring snowmelt does not add significantly to the extant 
MeHg levels in aquatic systems.

2. Photo-reduction and re-volatilization (evasion) of part of 
the deposited Hg in Arctic lakes and marine waters may 
constrain its overall rate of incorporation into aquatic food 
webs.

3. The production, speciation (dissolved vs. particulate, labile 
vs. non-labile) and concentrations of organic carbon are 
among the most important factors determining the various 
fate pathways of inorganic Hg in aquatic and terrestrial 
ecosystems, that is, evasion from waters, methylation 
and incorporation into food chains, and scavenging into 
sediments and soils.

The rates of Hg entry into the alternative pathways in aquatic and 
terrestrial ecosystems are poorly constrained, and require further 
elucidation. As the marine environment is the penultimate 
source of most of the risk of Hg exposure to wildlife and people 
in northern communities, a particular focus on the fate of Hg 
entering marine systems would be appropriate. The role of 
microbial communities in Hg fate in the Arctic has been largely 
overlooked but could be crucial to our understanding.

How does mercury move from the abiotic environment 
into food webs, and what are the factors influencing this 
movement?

4. MeHg is significantly more bioavailable than inorganic Hg 
forms, and so the net MeHg production rate is expected to 
be key in controlling the uptake rate of Hg at the base of 
food webs.

5. The methylation of inorganic Hg requires a labile organic 
carbon source to drive bacterial activity.

6. The bioavailability of inorganic Hg to bacteria is likely to 
be linked to the nature and quantities of competing ligands 
and surfaces in the environment, the relative amounts 
of dissolved versus particulate Hg(II), the reactivity of 
deposited Hg and the metabolic activity of microbes.

7. Environmental factors such as low organic matter content in 
sediment, low temperatures, well-oxygenated waters, water 
clarity, and alkaline pH may limit the capacity of bacterial 
communities to generate MeHg in Arctic lakes and marine 
systems.

8. The primary sites of MeHg formation in Arctic lakes are 
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anoxic sediments and wetlands. In the Arctic Ocean, 
estuarine, shelf and slope sediments are likely to be important 
but it is possible that MeHg is also formed in the mid-water 
column as has recently been found in temperate oceans.

It is unknown whether MeHg enters Arctic food webs mainly 
through the microbial populations responsible for its formation, 
or primarily as dissolved MeHg assimilated by phytoplankton and 
algae. Rates of inorganic and MeHg uptake by Arctic microbial 
and algal communities have not been adequately determined.

What role does methylation/demethylation play in controlling 
mercury accumulation rates in Arctic food chains?

9. As MeHg is the most bioavailable Hg form, its rate of 
production and destruction in the abiotic environment, 
and transfer within food webs, govern Hg accumulation 
in biota.

10. Monomethyl-Hg (MeHg) can be produced by methylation 
of inorganic Hg, and by photolysis of gaseous dimethyl-Hg 
(DMHg) produced by marine bacteria and macro-algae.

11. In Arctic Alaskan lakes, production of MeHg was almost 
balanced by summertime photo-demethylation which 
essentially competed for MeHg with lake food webs.

The aquatic MeHg cycle in the Arctic is very poorly understood, 
and requires further research as a matter of priority. In particular, 
little is known about the Arctic marine MeHg cycle, which is key 
to understanding the human risk developed from Hg exposure 
via traditional animal foods.

How do trophic processes influence mercury levels in higher 
order animals?

12. Dietary exposure represents the primary means by 
which higher trophic level organisms are exposed to Hg, 
especially the most toxic form, MeHg. This is the Hg form 
which biomagnifies by several orders of magnitude in 
concentration as it passes upward through food webs.

13. Biomagnification results in MeHg increasing as a percentage 
of THg in Arctic animal tissues from about 30% in 
zooplankton to more than 90% in upper trophic level 
predators.

14. Mercury exposure at the higher levels of food webs 
is influenced by both ‘top-down’ and ‘bottom-up’ 
trophic processes (e.g., predator dietary strategy, and 
bioaccumulation rate of MeHg influenced by ecosystem 
productivity and organism growth rates, respectively).

Do atmospheric mercury depletion events contribute to the 
increased mercury levels found in biota in different parts of 
the Arctic?

15. Contradictory results about the importance of AMDEs 
to biotic Hg levels have been reported in spatial studies 
of Hg concentrations in Arctic mosses, zooplankton and 
mosquitoes, and no general conclusions can yet be reached.

16. A small fraction (13% to 15%) of the Hg deposited by AMDEs 

onto snow surfaces has been reported to be bioavailable 
to bacteria, yet the rapid re-volatilization of about 80% of 
AMDE Hg from snowpacks may limit the exposure of food 
webs to Hg from this source.

The bioavailable fraction of AMDE-related Hg, and its rate of 
accumulation by biota, is a priority for further investigation as 
it is a potentially important process contributing to Hg exposure 
in aquatic food webs.

What are the effects of organic carbon on mercury speciation, 
dynamics, and bioavailability?

17. Increasing evidence suggests the speciation, dynamics, and 
bioavailability of Hg in aquatic systems is closely tied to the 
sources, composition, and dynamics of organic carbon.

18. Variations in the productivity of Arctic freshwater lakes 
over recent centuries and decades may play an important 
role in influencing the sedimentary Hg flux rate through 
scavenging of inorganic Hg from the water column by 
particulate organic matter.

19. Labile organic carbon mainly (but not exclusively) from 
algae plays a crucial role in aquatic systems by providing 
a substrate and physical focus for bacterial methylation of 
Hg(II) to MeHg, the form that presents almost all of the 
toxicological risk to wildlife and humans.

20. In addition to the importance of sediments as methylation 
sites, it has recently been discovered in temperate oceans 
that re-mineralization of organic carbon in the water column 
can generate MeHg, particularly at locations indicated by 
nutrient maxima.

Although it is unknown whether MeHg formation also takes 
place in Arctic seawaters, the Arctic Ocean does exhibit nutrient 
maxima which may be suggestive of this effect. Confirmation 
and measurement of this process in the Arctic Ocean would be 
a significant advance in understanding of the Arctic Hg cycle.

What is the rate of long-term sequestration of mercury 
through burial in Arctic non-biological archives (sediments, 
soils and ice)?

21. Marine sediments sequester the largest mass of Hg in the 
Arctic annually (more than 110 t/y combined in the Arctic 
Ocean and Hudson Bay alone), with northern peatlands also 
likely to be an important sink (≤ 70 t/y). Lake sediments and 
glaciers are negligible sinks; soils are possibly also important 
but data are lacking.

22. In the Arctic Ocean and Hudson Bay, the near balance 
between rates of Hg inputs and sequestration in sediments 
implies that most of the annual Hg inputs to seawater are 
ultimately captured and buried in sediments.
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δ13C Stable carbon isotope

δ15N Stable nitrogen isotope

[..] Concentration, e.g. [Hg] = total Hg concentration

ACI Activated carbon injection

AMAP Arctic Monitoring and Assessment Programme

AMDE Atmospheric mercury depletion event

ASGM Artisanal and small-scale gold mining

BMDL Benchmark dose lower limit

Br Bromine

bw Body weight

C Carbon

Cd Cadmium

C-DOM Colored dissolved organic matter

CH4 Methane

CO2 Carbon dioxide

Cu Copper

DOC Dissolved organic carbon

DOM Dissolved organic matter

dw Dry weight

ESPs Electrostatic precipitators

EXEC ‘Extended Emissions Control’ emissions scenario

Fe Iron

FFs Fabric filters

FGD Flue gas desulfurization

HC Hydrocarbon

HCH Hexachlorocyclohexane

Hg Mercury

IPCC Intergovernmental Panel on Climate Change

LOAEL Lowest observed adverse effect level

LRTAP UNECE Convention on Long-range 
Transboundary Air Pollution

MFTR ‘Maximum Feasible Tech nological Reduction’ 
emissions scenario

N Nitrogen

NAO North Atlantic Oscillation

NMDA N-methyl-D-aspartate

NOEL No Observed Effect Level

ODE Ozone depletion event

Pb Lead

pCO2 Partial pressure of carbon dioxide

PNA Pacific North American

POC Particulate organic carbon

POM Particulate organic matter

POP Persistent organic pollutant

RfD Reference dose

RFSL Russian food safety limit

S2 Methodologically-defined component of carbon 
(S1 and S2 components are mostly algal-derived 
kerogen; S3 is oxygen-bearing organic matter. See 
Carrie et al., 2010)

SCR Selective catalytic reduction

Se Selenium

SQ ‘Status Quo’ emissions scenario

Ti Titanium

TOC Total organic carbon

TWI Tolerable weekly intake

UNEP United Nations Environment Programme

USD U.S. Dollar

USEPA U.S. Environmental Protection Agency

USFDA U.S. Food and Drug Administration

UV Ultraviolet

ww Wet weight

Zn Zinc

Models

DEHM Danish Eulerian Hemispheric model

GEOS-Chem Goddard Earth Observing System – chemical 
transport model

GLEMOS Global EMEP Multi-media Modelling System

GRAHM Global/Regional Atmospheric Heavy Metal model

Mercury terminology

DGM Dissolved gaseous mercury

DMHg Dimethylmercury

FPM Fine particulate mercury

GEM Gaseous elemental mercury

GOM Gaseous oxidized mercury

Hg(II) Inorganic divalent mercury

Hg(0) Elemental mercury

HgP / PHg Particulate mercury

HgT / THg Total mercury

HgR / RGM Reactive gaseous mercury

MeHg Methylmercury

MMHg Monomethylmercury

RGM / HgR Reactive gaseous mercury

TGM Total gaseous mercury

THg / HgT Total mercury

TPM Total particulate mercury

Abbreviations and Acronyms
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